

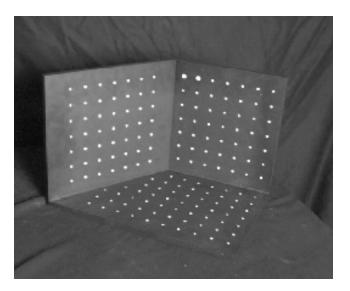
Folien zur Vorlesung am 08.04.2025 3D Computer Vision

KAMERAKALIBRATION

Prof. Uwe Hahne

Related problem: camera calibration

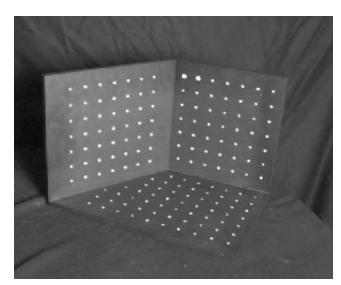
- Goal: estimate the camera parameters
 - Version 1: solve for 3x4 projection matrix


- Version 2: solve for camera parameters separately
 - intrinsics (focal length, principal point, pixel size)
 - extrinsics (rotation angles, translation)
 - radial distortion

Estimating the projection matrix

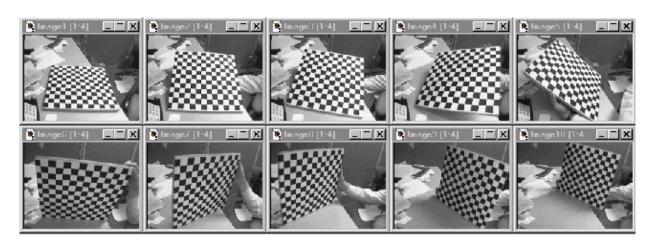
- Place a known object in the scene
 - identify correspondence between image and scene
 - compute mapping from scene to image

$$\begin{bmatrix} u_i \\ v_i \\ 1 \end{bmatrix} \cong \begin{bmatrix} m_{00} & m_{01} & m_{02} & m_{03} \\ m_{10} & m_{11} & m_{12} & m_{13} \\ m_{20} & m_{21} & m_{22} & m_{23} \end{bmatrix} \begin{bmatrix} X_i \\ Y_i \\ Z_i \\ 1 \end{bmatrix}$$



Calibration using a reference object

- Place a known object in the scene
 - identify correspondence between image and scene
 - compute mapping from scene to image


Issues

- must know geometry very accurately
- must know 3D -> 2D correspondence

Alternative: multi-plane calibration

Images courtesy Jean-Yves Bouquet

Advantage

- Only requires a plane
- Don't have to know positions/orientations
- Good code available online! (including in OpenCV)
 - Matlab version by Jean-Yves Bouguet: <u>http://robots.stanford.edu/cs223b04/JeanYvesCalib/</u>
 - Amy Tabb's camera calibration software: https://github.com/amy-tabb/basic-camera-calibration
 - https://uhahne.github.io/3DCV/Workshops/Workshop-01-Camera%20Calibration/

Prof. Uwe Hahne