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Binocular Stereo

Single image stereogram, 
https://en.wikipedia.org/wiki/Autostereogram

What is this?
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Binocular Stereo

Single image stereogram, 
https://en.wikipedia.org/wiki/Autostereogram

What is this?

Prof. Uwe Hahne 4

https://en.wikipedia.org/wiki/Autostereogram


https://giphy.com/gifs/wigglegram-706pNfSKyaDug
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https://giphy.com/gifs/wigglegram-706pNfSKyaDug


“Mark Twain at Pool Table", no date, UCR Museum of Photography
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Stereo Vision as Localizing Points in 3D

• An object point will project 
to some point in our image

• That image point 
corresponds to a ray in the 
world

• Two rays intersect at a 
single point, so if we want 
to localize points in 3D we 
need 2 eyes
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Stereo

• Given two images from different viewpoints
– How can we compute the depth of each point in the image?
– Based on how much each pixel moves between the two 

images
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Epipolar geometry
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Arne Nordmann (norro), CC BY-SA 3.0 via Wikimedia Commons

http://creativecommons.org/licenses/by-sa/3.0/


Epipolar geometry - Rectification
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Image from Silvio Savarese, Public domain, via Wikimedia Commons

https://en.wikipedia.org/wiki/Image_rectification


epipolar
lines

Epipolar geometry

(x1, y1) (x2, y1)

x2 - x1 = the disparity of pixel (x1, y1)

Two images captured by a purely horizontal translating camera
(rectified stereo pair)
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Disparity = inverse depth

http://stereo.nypl.org/view/41729

(Or, hold a finger in front of your face and wink each eye in succession.)
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http://stereo.nypl.org/view/41729


Your basic stereo matching algorithm

• Match Pixels in Conjugate Epipolar Lines
– Assume brightness constancy
– This is a challenging problem
– Hundreds of approaches

• A good survey and evaluation:  vision.middlebury.edu/stereo/
• A newer evaluation approach: https://www.eth3d.net/low_res_two_view

– Science community uses fixed data sets for evaluation:
• https://www.eth3d.net/datasets
• https://vision.middlebury.edu/stereo/data/
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https://vision.middlebury.edu/stereo/
https://www.eth3d.net/low_res_two_view
https://www.eth3d.net/datasets
https://vision.middlebury.edu/stereo/data/


Your basic stereo matching algorithm

For each epipolar line
For each pixel in the left image

• compare with every pixel on same epipolar line in right image
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Your basic stereo matching algorithm

For each epipolar line
For each pixel in the left image

• compare with every pixel on same epipolar line in right image
• pick pixel with minimum match cost

Improvement: match windows
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Stereo matching based on SSD

SSD

dmin d
Best matching disparity
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Window size

– Smaller window
+ more detail
- more noise

– Larger window
+ less noise
- less detail

W = 3 W = 20

Better results with adaptive window
• T. Kanade and M. Okutomi, A Stereo Matching Algorithm with an 

Adaptive Window: Theory and Experiment, ICRA 1991. 
• D. Scharstein and R. Szeliski. Stereo matching with nonlinear 

diffusion. IJCV, July 1998 

Effect of window size
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http://www.cs.cmu.edu/~ph/869/papers/kanade-okutomi.pdf
http://www.cs.cmu.edu/~ph/869/papers/kanade-okutomi.pdf
https://vision.middlebury.edu/~schar/papers/diffusion.pdf
https://vision.middlebury.edu/~schar/papers/diffusion.pdf


Stereo results
– Data from University of Tsukuba
– Similar results on other images without ground truth

Ground truthScene left and right
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Results with window search

Window-based matching
(best window size)

Ground truth
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Better methods exist...

Graph cuts-based method
Boykov et al., Fast Approximate Energy Minimization via Graph Cuts, 

International Conference on Computer Vision 1999.

Ground truth

For the latest and greatest see  
http://www.middlebury.edu/stereo/ and 
https://www.eth3d.net/low_res_two_view
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http://www.cs.cornell.edu/rdz/Papers/BVZ-iccv99.pdf
http://www.middlebury.edu/stereo/
https://www.eth3d.net/low_res_two_view


Stereo results

• Why are the wrong values where they are?
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Graph cuts-based method
Boykov et al., Fast Approximate Energy Minimization via Graph Cuts, 

International Conference on Computer Vision 1999.

Bad pixels (absolute 
disparity error > 1.0)

http://www.cs.cornell.edu/rdz/Papers/BVZ-iccv99.pdf


Stereo as energy minimization

• What defines a good stereo correspondence?
1. Match quality

• Want each pixel to find a good match in the other image
2. Smoothness

• If two pixels are adjacent, they should (usually) move about the same 
amount 
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Stereo as energy minimization

• Find disparity map d that minimizes an energy 
function 

• Simple pixel / window matching

SSD distance between windows 
I(x, y) and J(x + d(x,y), y)=
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Stereo as energy minimization

y = 141

C(x, y, d); the disparity space image (DSI)x

d
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Stereo as energy minimization

y = 141

x

d

Simple pixel / window matching: choose the minimum of 
each column in the DSI independently:
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Greedy selection of best match
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Stereo as energy minimization

• Better objective function

{ {

match cost smoothness cost

Want each pixel to find a 
good match in the other 

image

Adjacent pixels should (usually) 
move about the same amount
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Stereo as energy minimization

match cost:

smoothness cost:

4-connected 
neighborhood

8-connected 
neighborhood

: set of neighboring pixels
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Smoothness cost

“Potts model”

L1 distance

How do we choose V?
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Smoothness cost

• If λ = infinity, then we only consider smoothness
• Optimal solution is a surface of constant depth/disparity
– Fronto-parallel surface

• In practice, want to balance data term with smoothness 
term
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Dynamic Programming

• Can minimize this independently per scanline using 
dynamic programming (DP)
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Dynamic Programming

• Finds “smooth”, low-cost path through DSI from left to right
• Visiting a node incurs its data cost, switching disparities from 

one column to the next also incurs a (smoothness) cost

y = 141

x

d
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Dynamic Programming
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https://en.wikipedia.org/wiki/Seam_carving 

https://en.wikipedia.org/wiki/Seam_carving


Dynamic Programming
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https://en.wikipedia.org/wiki/Seam_carving


Dynamic Programming
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https://en.wikipedia.org/wiki/Seam_carving 

https://en.wikipedia.org/wiki/Seam_carving


Dynamic Programming
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Dynamic Programming

• Can we apply this trick in 2D as well?

• No: the shortest path trick only works to find a 1D path

Slide credit: D. Huttenlocher
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Stereo as a minimization problem

• The 2D problem has many local minima
– Gradient descent doesn’t work well

• And a large search space
– n x m image w/ k disparities has knm possible solutions
– Finding the global minimum is NP-hard in general

• Good approximations exist (e.g., graph cuts algorithms)
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