

Folien zur Vorlesung am 13.05.2025 3D Computer Vision

TRIANGULATION

Depth from disparity

disparity d $d = x_L - x_R$ baseline b $d = b^*f / Z$

Simple (calibrated) Stereo

• Solving for (x, y, z)

$$x = \frac{b(u_l - o_x)}{(u_l - u_r)} \qquad \qquad y = \frac{bf_x(v_l - o_y)}{f_y(u_l - u_r)} \qquad \qquad z = \frac{bf_x}{(u_l - u_r)}$$

• where $(u_l - u_r)$ is called the disparity

Real-time stereo

Nomad robot searched for meteorites in Antartica in 1997

- Used for robot navigation (and other tasks)
 - Several real-time stereo techniques have been developed (most based on simple discrete search)

Stereo reconstruction pipeline

- Steps
 - Calibrate cameras
 - Rectify images
 - Compute disparity
 - Estimate depth

What will cause errors?

- Camera calibration errors
- Poor image resolution
- Occlusions
- Violations of brightness constancy (specular reflections)
- Large motions
- Low-contrast image regions

Active stereo with structured light

https://ios.gadgethacks.com/news/watch-iphone-xs-30k-ir-dots-scan-your-face-0180944/

Active stereo with structured light

https://www.sick.com/de/en/machine-vision/3d-machine-vision/visionary-s/c/g507251

Active stereo with structured light

 \rightarrow

- Project "structured" light patterns onto the object
 - simplifies the correspondence problem
 - basis for active depth sensors, such as Kinect and iPhone X (using IR)

Using a light beam instead of a second camera

Scene point (x,y,z) lies on the intersection of the Camera ray and the light ray.

Slide inspired by Shree Nayar

Using a light beam instead of a second camera

Capture background image and images with laser point and subtract them to find the coordinates (x_i,y_i).

However, for each point in the depth map, one image is needed.

For 640x480 @ 30Hz \rightarrow ~3 hours acquisition time!

Image: University of Tsukuba

Slide inspired by Shree Nayar

Using a light plane instead of a second camera

Scene point (x,y,z) lies on the intersection of the Camera ray and the light plane.

Slide inspired by Shree Nayar

Using a projector instead of a second

camera

Scene point (x,y,z) lies on the intersection of the Camera ray and the light plane.

Slide inspired by Shree Nayar

Using a projector instead of a second camera

What the camera sees

What the projector "sees"

Capture images with laser lines and find all the coordinates (x_i,y_i) for the whole column.

Now only for each column in the depth map, one image is needed.

Still 640 @ 30Hz \rightarrow ~21 seconds acquisition time!

Image: University of Tsukuba

Slide inspired by Shree Nayar

Using a projector instead of a second

camera

What the camera sees

What the projector "sees"

Can we capture less images with multiple laser lines and find all the coordinates (x_i,y_i) for all the columns?

No! There is no guarantee that the order is preserved.

Image: University of Tsukuba

Slide inspired by Shree Nayar

Binary Coding

Faster:

 $2^n - 1$ stripes in n images.

Example:

3 binary-encoded patterns which allows the measuring surface to be divided in 8 subregions

Binary Coding

• Assign each stripe a unique illumination code over time [Posdamer 82]

Space

Slide inspired by S. Narasimhan

Strutured light scanning

Further improvements developed:

- <u>"Gray code</u>", avoiding light bleeding artefacts.
- Using color projection to get k-ary coding
- Using intensity variation functions (aka phase shifting method) allows a reduction to only three images in principle.

Major drawback:

 Projector-camera calibration is needed and precision highly depends on that.

Laser scanning

Digital Michelangelo Project (2000) http://graphics.stanford.edu/projects/mich/

- Optical triangulation
 - Project a single stripe of laser light
 - Scan it across the surface of the object
 - This is a very precise version of structured light scanning

The Digital Michelangelo Project, Levoy et al.

The Digital Michelangelo Project, Levoy et al.

The Digital Michelangelo Project, Levoy et al.

The Digital Michelangelo Project, Levoy et al.

Images from https://cdn.sick.com/media/docs/8/48/448/product_information_ranger3_3d_vision_en_im0080448.pdf

Image from Mattias Johannesson, Laser Triangulation Tackles Imaging Tasks Big and Small, https://www.photonics.com/Articles/Laser_Triangulation_Tackles_Imaging_Tasks_Big_and/a64616 (2019)

Image from Mattias Johannesson, Laser Triangulation Tackles Imaging Tasks Big and Small, <u>https://www.photonics.com/Articles/Laser_Triangulation_Tackles_Imaging_Tasks_Big_and/a64616 (2019)</u>

3D Photography on your Desk

http://www.vision.caltech.edu/bouguetj/ICCV98/ (link is dead, Bouguet is at Cruise now)