

Folien zur Vorlesung am 13.05.2025 3D Computer Vision

EPIPOLARGEOMETRIE

Back to stereo

• Where do epipolar lines come from?

Two-view geometry

• Where do epipolar lines come from?

Fundamental matrix

- This epipolar geometry of two views is described by a very special 3x3 matrix ${\bf F}\,$, called the fundamental matrix
- **F** maps (homogeneous) *points* in image 1 to *lines* in image 2!
- The epipolar line (in image 2) of point ${f p}$ is: ${f Fp}$
- *Epipolar constraint* on corresponding points: $\mathbf{q}^T \mathbf{F} \mathbf{p} = 0$

Epipolar constraint

• Valid for all corresponding point pairs (p, q)

Reminder: Point and line duality

– A line I is a homogeneous 3-vector

– It is \perp to every point (ray) **p** on the line: **I**·**p**=0

What is the line **I** spanned by points **p**₁ and **p**₂?

- I is \perp to $\mathbf{p_1}$ and $\mathbf{p_2} \implies \mathbf{I} = \mathbf{p_1} \times \mathbf{p_2}$
- I can be interpreted as a *plane normal*

What is the intersection of two lines **I**₁ and **I**₂?

• **p** is \perp to **l**₁ and **l**₂ \Rightarrow **p** = **l**₁ × **l**₂

Points and lines are *dual* in projective space

Epipolar constraint

- If points p and q correspond, then q lies on the epipolar line l' = Fp corresponding to the point q.
- In other words $0 = q^T I' = q'^T F p$.
- Conversely, if image points satisfy the relation q'^TFp = 0 then the rays defined by these points are coplanar, which is a necessary condition for points to correspond.

Fundamental matrix

• Two special points: **e**₁ and **e**₂ (the *epipoles*): projection of one camera into the other

Fundamental matrix

- Two special points: e₁ and e₂ (the *epipoles*): projection of one camera into the other
- All of the epipolar lines in an image pass through the epipole
- Epipoles may or may not be inside the image

• If the epipoles are inside the image – what is visible in both images if they are taken at the same moment?

Example

Demo

• Given those two images:

Where are the epipolar lines?

Image from koubiak posted at https://answers.opencv.org/question/17912/location-of-epipole/

Properties of the Fundamental Matrix

- ${f Fp}$ is the epipolar line associated with ${f p}$
- $\mathbf{F}^T \mathbf{q}$ is the epipolar line associated with \mathbf{q}
- $\mathbf{F}\mathbf{e}_1 = \mathbf{0}$ and $\mathbf{F}^T\mathbf{e}_2 = \mathbf{0}$
- ${f F}$ is rank 2
- ${f F}$ has 9 values, but only defined up to a scale factor* and as the determinant is zero, 7 degrees of freedom remain.
- * $q^TFp = 0 = q^TkFp \leftarrow k$ as a scale factor

Fundamental matrix

- Why does **F** exist?
- Let's derive it...

 $ilde{\mathbf{p}} = \mathbf{K}_1^{-1} \mathbf{p}$: ray through **p** in camera 1's (and world) coordinate system $ilde{\mathbf{q}} = \mathbf{K}_2^{-1} \mathbf{q}$: ray through **q** in camera 2's coordinate system

- $\tilde{\mathbf{p}}$, $\mathbf{R}^{T}\tilde{\mathbf{q}}$, and \mathbf{t} are coplanar
- epipolar plane can be represented as with its normal $\mathbf{t} \times \tilde{\mathbf{p}}$

$$(\mathbf{R}^T \tilde{\mathbf{q}})^T (\mathbf{t} \times \tilde{\mathbf{p}}) = 0$$

Cross-product as linear operator

Useful fact: Cross product with a vector **t** can be represented as multiplication with a (*skew-symmetric*) 3x3 matrix

$$egin{aligned} \left[\mathbf{t}
ight]_{ imes} &= \left[egin{aligned} 0 & -t_z & t_y \ t_z & 0 & -t_x \ -t_y & t_x & 0 \end{array}
ight] \ \mathbf{t} & imes \mathbf{ ilde{p}} &= \left[\mathbf{t}
ight]_{ imes} \,\mathbf{ ilde{p}} \end{aligned}$$

- One more substitution:
 - Cross product with **t** (on left) can be represented as a 3x3 matrix

$$\begin{bmatrix} \mathbf{t} \end{bmatrix}_{\times} = \begin{bmatrix} 0 & -t_z & t_y \\ t_z & 0 & -t_x \\ -t_y & t_x & 0 \end{bmatrix} \quad \mathbf{t} \times \tilde{\mathbf{p}} = \begin{bmatrix} \mathbf{t} \end{bmatrix}_{\times} \tilde{\mathbf{p}}$$

 $\tilde{\mathbf{q}}^T \mathbf{R} \left[\mathbf{t} \right]_{\times} \tilde{\mathbf{p}} = 0$

Rectified case

$$\mathbf{R} = \mathbf{I}_{3 \times 3} \\ \mathbf{t} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T \qquad \mathbf{E} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}$$

Prof. Uwe Hahne

Stereo image rectification

- reproject image planes onto a common plane
 - plane parallel to the line between optical centers
- pixel motion is horizontal after this transformation
- two homographies, one for each input image reprojection
- Various realizations:
 - C. Loop and Z. Zhang. <u>Computing</u> <u>Rectifying Homographies for Stereo</u> <u>Vision</u>. CVPR 1999.
 - OpenCV implements: Richard I Hartley. <u>Theory and practice of projective</u> <u>rectification</u>. *International Journal of Computer Vision*, 35(2):115–127, 1999.

Rectification example

Original stereo pair

Prof. Uwe Hahne

Rectification demo

Left imageRight imageLeft imageImageLeft imageImageLeft imageRight image

Prof. Uwe Hahne

Estimating F

- If we don't know K₁, K₂, R, or t, can we estimate F for two images?
- Yes, given enough correspondences

Estimating F

The fundamental matrix **F** is defined by $\mathbf{x}^{T}\mathbf{F}\mathbf{x} = 0$ for any pair of matches x and x' in two images.

Let
$$\mathbf{x} = (u, v, 1)^{\mathsf{T}}$$
 and $\mathbf{x}' = (u', v', 1)^{\mathsf{T}}$, $\mathbf{F} = \begin{bmatrix} f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23} \\ f_{31} & f_{32} & f_{33} \end{bmatrix}$

each match gives a linear equation

$$uu'f_{11} + vu'f_{12} + u'f_{13} + uv'f_{21} + vv'f_{22} + v'f_{23} + uf_{31} + vf_{32} + f_{33} = 0$$

Estimating F using 8-points

Like with homographies, instead of solving $\mathbf{A}\mathbf{f} = 0$, we seek **f** to minimize $\|\mathbf{A}\mathbf{f}\|$, least eigenvector of $\mathbf{A}^{\mathrm{T}}\mathbf{A}$.

Reminder: Least squares

$$At = b$$

Find **t** so that
$$||\mathbf{At} - \mathbf{b}||^2$$
 is minimized.

Define the normal equations

$$\mathbf{A}^{\mathrm{T}}\mathbf{A}\mathbf{t} = \mathbf{A}^{\mathrm{T}}\mathbf{b}$$
$$\mathbf{t} = \left(\mathbf{A}^{\mathrm{T}}\mathbf{A}\right)^{-1}\mathbf{A}^{\mathrm{T}}\mathbf{b}$$

https://de.wikipedia.org/wiki/Methode_der_kleinsten_Quadrate#L%C3%B6sung_des_ Minimierungsproblems

Reminder: Eigenvector

We want Af as close to 0 as possible and $||f||^2 = 1$:

 $\min_{\mathbf{f}} \|A\mathbf{f}\|^2 \quad \text{such that } \|\mathbf{f}\|^2 = \mathbf{1}$

Constrained linear least squares problem

Known from homographies (GDV):

We know that: $\|A\mathbf{h}\|^2 = (A\mathbf{h})^T (A\mathbf{h}) = \mathbf{h}^T A^T A\mathbf{h}$ and $\|\mathbf{h}\|^2 = \mathbf{h}^T \mathbf{h} = 1$

$$\begin{split} \min_{\mathbf{h}}(\mathbf{h}^{T}A^{T}A\mathbf{h}) & \text{such that } \mathbf{h}^{T}\mathbf{h} = 1 \\ \text{Define Loss function } L(\mathbf{h}, \lambda): \\ L(\mathbf{h}, \lambda) &= \mathbf{h}^{T}A^{T}A\mathbf{h} - \lambda(\mathbf{h}^{T}\mathbf{h} - 1) \\ \text{Taking derivatives of } L(\mathbf{h}, \lambda) & \text{w.r.t } \mathbf{h}: \quad 2A^{T}A\mathbf{h} - 2\lambda\mathbf{h} = \mathbf{0} \\ \hline A^{T}A\mathbf{h} &= \lambda\mathbf{h} \\ \hline \text{Eigenvalue Problem} \\ \end{split}$$

From https://fpcv.cs.columbia.edu/

Prof. Uwe Hahne

8-point algorithm

- **F** should have rank 2
- To enforce that **F** is of rank 2, **F** is replaced by **F**' that minimizes $||\mathbf{F} \mathbf{F}'||$ subject to the rank constraint.
 - This is achieved by SVD. Let $\mathbf{F} = \mathbf{U} \Sigma \mathbf{V}^{\mathrm{T}}$, where

$$\Sigma = \begin{bmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \\ 0 & 0 & \sigma_3 \end{bmatrix}, \quad \text{let} \quad \Sigma' = \begin{bmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

then $\mathbf{F}' = \mathbf{U}\Sigma'\mathbf{V}^{\mathrm{T}}$ is the solution (closest rank-2 matrix to **F**)

8-point algorithm

```
% Build the constraint matrix
A = [x2(1,:)'.*x1(1,:)' x2(1,:)'.*x1(2,:)' x2(1,:)' ...
        x2(2,:)'.*x1(1,:)' x2(2,:)'.*x1(2,:)' x2(2,:)' ...
        x1(1,:)' x1(2,:)' ones(npts,1)];
```

[U, D, V] = svd(A);

```
% Extract fundamental matrix from the column of V
% corresponding to the smallest singular value.
F = reshape(V(:,9),3,3)';
```

```
% Enforce rank2 constraint
[U,D,V] = svd(F);
F = U*diag([D(1,1) D(2,2) 0])*V';
```


8-point algorithm

- Pros: linear, easy to implement and fast
- Cons: susceptible to noise

Problem with 8-point algorithm

Orders of magnitude difference between column of data matrix → least-squares yields poor results

Normalized 8-point algorithm

normalized least squares yields good results Transform image to ~[-1,1]x[-1,1]

Normalized 8-point algorithm

- Transform input by $\hat{\mathbf{x}}_i = T\mathbf{x}_i$, $\hat{\mathbf{x}}_i' = T\mathbf{x}_i'$
- Call 8-point on $\,\, {\widehat{x}}_i, {\widehat{x}}_i' \,$ to obtain $\, {\widehat{F}}$
- $\mathbf{F} = \mathbf{T}'^{\mathrm{T}} \mathbf{\hat{F}} \mathbf{T}$

Normalized 8-point algorithm

[x1, T1] = normalise2dpts(x1); [x2, T2] = normalise2dpts(x2); A = [x2(1,:)'.*x1(1,:)' x2(1,:)'.*x1(2,:)' x2(1,:)'... x2(2,:)'.*x1(1,:)' x2(2,:)'.*x1(2,:)' x2(2,:)'... x1(1,:)' x1(2,:)' ones(npts,1)]; [U,D,V] = svd(A); F = reshape(V(:,9),3,3)'; [U,D,V] = svd(F); F = U*diag([D(1,1) D(2,2) 0])*V'; % Denormalise F = T2'*F*T1;

Results (ground truth)

Results (ground truth)

Results (normalized 8-point algorithm)

What about more than two views?

- The geometry of three views is described by a 3 x 3 x 3 tensor called the *trifocal tensor*
- The geometry of four views is described by a 3 x 3 x 3 x 3 x 3 tensor called the *quadrifocal tensor*
- After this it starts to get complicated...so usually numerical solutions are implemented.