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Back to stereo

• Where do epipolar lines come from?
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Two-view geometry

• Where do epipolar lines come from?
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Fundamental matrix

• This epipolar geometry of two views is described by a very special 
3x3 matrix      , called the fundamental matrix

• maps (homogeneous) points in image 1 to lines in image 2!
• The epipolar line (in image 2) of point p is:

• Epipolar constraint on corresponding points:
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Epipolar constraint

• Valid for all corresponding point pairs (p, q)
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l

Reminder: Point and line duality

– A line l is a homogeneous 3-vector
– It is ^ to every point (ray) p on the line:  l.p=0
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p1
p2

What is the intersection of two 
lines l1 and l2 ?

• p is ^ to l1 and l2 Þ p = l1 ´ l2

What is the line l spanned by 
points p1 and p2 ?

• l is ^ to p1 and p2 Þ l = p1 ´ p2 

• l can be interpreted as a plane normal

COP

l1

l2

p

COP

Points and lines are dual in projective space



Epipolar constraint

• If points p and q correspond, then q lies on the epipolar 
line l′ = Fp corresponding to the point q.

• In other words 0 = qTl′ = q′TFp. 
• Conversely, if image points satisfy the relation q′TFp = 0 

then the rays defined by these points are coplanar, which 
is a necessary condition for points to correspond.
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From Hartley and Zisserman's "Bible": Multiple View Geometry in Computer Vision

http://www.robots.ox.ac.uk/~vgg/hzbook/index.html


Fundamental matrix

• Two special points: e1 and e2 (the epipoles): projection of one 
camera into the other
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epipolar line
epipolar line
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(projection of ray)



Fundamental matrix
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0

• Two special points: e1 and e2 (the epipoles): projection of one 
camera into the other

• All of the epipolar lines in an image pass through the epipole
• Epipoles may or may not be inside the image



Epipoles

• If the epipoles are inside the image – what is visible in 
both images if they are taken at the same moment?
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Example
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Demo
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Epipoles

• Given those two images: 

Prof. Uwe Hahne 16

Where are the epipolar lines?



Epipoles
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Epipoles
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Image from koubiak posted at https://answers.opencv.org/question/17912/location-of-epipole/ 

https://answers.opencv.org/question/17912/location-of-epipole/


Properties of the Fundamental Matrix

• is the epipolar line associated with

• is the epipolar line associated with 

• and 

• is rank 2

• has 9 values, but only defined up to a scale factor* and as the 
determinant is zero, 7 degrees of freedom remain.

• * qTFp = 0 = qTkFp ß k as a scale factor
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T



Fundamental matrix

• Why does F exist?
• Let’s derive it…
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Fundamental matrix – calibrated case
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0

: intrinsics of camera 1 : intrinsics of camera 2

: rotation of image 2 w.r.t. camera 1

: ray through p in camera 1’s (and world) coordinate system

: ray through q in camera 2’s coordinate system



Fundamental matrix – calibrated case

• ,         , and     are coplanar
• epipolar plane can be represented as with its normal 
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Fundamental matrix – calibrated case
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Cross-product as linear operator
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Useful fact: Cross product with a vector t can be 
represented as multiplication with a (skew-symmetric) 3x3 
matrix



Fundamental matrix – calibrated case

• One more substitution:
– Cross product with t (on left) can be represented as a 3x3 matrix
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Fundamental matrix – calibrated case
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Fundamental matrix – calibrated case
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0

: ray through p in camera 1’s (and world) coordinate system

: ray through q in camera 2’s coordinate system
{

the Essential matrix



Fundamental matrix – uncalibrated case
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0

the Fundamental matrix

: intrinsics of camera 1 : intrinsics of camera 2

: rotation of image 2 w.r.t. camera 1



Rectified case
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Stereo image rectification
• reproject image planes 

onto a common plane
– plane parallel to the line between optical 

centers

• pixel motion is horizontal 
after this transformation

• two homographies, one for 
each input image 
reprojection

• Various realizations:
– C. Loop and Z. Zhang. Computing 

Rectifying Homographies for Stereo 
Vision. CVPR 1999.

– OpenCV implements: Richard I Hartley. 
Theory and practice of projective 
rectification. International Journal of 
Computer Vision, 35(2):115–127, 1999.
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http://research.microsoft.com/~zhang/Papers/TR99-21.pdf
http://research.microsoft.com/~zhang/Papers/TR99-21.pdf
http://research.microsoft.com/~zhang/Papers/TR99-21.pdf
http://www.cs.ait.ac.th/~mdailey/cvreadings/Hartley-Rectify.pdf
http://www.cs.ait.ac.th/~mdailey/cvreadings/Hartley-Rectify.pdf


Original stereo pair

After rectification

Rectification example
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Rectification demo
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Estimating F

• If we don’t know K1, K2, R, or t, can we estimate F for 
two images?

• Yes, given enough correspondences
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Estimating F

The fundamental matrix F is defined by 𝐱′!𝐅𝐱 = 0 for any 
pair of matches x and x’ in two images.

Prof. Uwe Hahne 37

Let x=(u,v,1)T and x’=(u’,v’,1)T, 𝐅 =
𝑓!! 𝑓!" 𝑓!#
𝑓"! 𝑓"" 𝑓"#
𝑓#! 𝑓#" 𝑓##

each match gives a linear equation

𝑢𝑢′𝑓!! + 𝑣𝑢′𝑓!" + 𝑢′𝑓!# + 𝑢𝑣′𝑓"! + 𝑣𝑣′𝑓"" + 𝑣′𝑓"# + 𝑢𝑓#! + 𝑣𝑓#" + 𝑓## = 0



𝑢!𝑢!´ 𝑣!𝑢!´ 𝑢!´ 𝑢!𝑣!´ 𝑣!𝑣!´ 𝑣!´ 𝑢! 𝑣! 1
𝑢"𝑢"´ 𝑣"𝑢"´ 𝑢"´ 𝑢"𝑣"´ 𝑣"𝑣"´ 𝑣"´ 𝑢" 𝑣" 1
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝑢$𝑢$´ 𝑣$𝑢$´ 𝑢$´ 𝑢$𝑣$´ 𝑣$𝑣$´ 𝑣$´ 𝑢$ 𝑣$ 1

𝑓!!
𝑓!"
𝑓!#
𝑓"!
𝑓""
𝑓"#
𝑓#!
𝑓#"
𝑓##

= 0

Estimating F using 8-points
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Like with homographies, instead of solving            , we 
seek f to minimize         , least eigenvector of          .

𝐀𝐟 = 0
𝐀𝐟 𝐀!𝐀



Reminder: Least squares

Find t so that
is minimized. 

Define the normal equations
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https://de.wikipedia.org/wiki/Methode_der_kleinsten_Quadrate#L%C3%B6sung_des_
Minimierungsproblems 

https://de.wikipedia.org/wiki/Methode_der_kleinsten_Quadrate
https://de.wikipedia.org/wiki/Methode_der_kleinsten_Quadrate


Reminder: Eigenvector
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From https://fpcv.cs.columbia.edu/  

Known from homographies (GDV):

https://fpcv.cs.columbia.edu/


8-point algorithm

• F should have rank 2
• To enforce that F is of rank 2, F is replaced by F’ that 

minimizes              subject to the rank constraint. 
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𝐅 − 𝐅′

• This is achieved by SVD. Let                    , where 

,     let 

then                      is the solution (closest rank-2 matrix to F)

𝐅 = 𝐔Σ𝐕!

Σ =
𝜎! 0 0
0 𝜎" 0
0 0 𝜎#

Σ′ =
𝜎! 0 0
0 𝜎" 0
0 0 0

𝐅′ = 𝐔Σ′𝐕%



8-point algorithm

% Build the constraint matrix
A = [x2(1,:)'.*x1(1,:)'  x2(1,:)'.*x1(2,:)'  x2(1,:)' ...

x2(2,:)'.*x1(1,:)'  x2(2,:)'.*x1(2,:)'  x2(2,:)' ...
x1(1,:)'            x1(2,:)'          ones(npts,1) ];       

[U,D,V] = svd(A);

% Extract fundamental matrix from the column of V 
% corresponding to the smallest singular value.
F = reshape(V(:,9),3,3)';

% Enforce rank2 constraint 
[U,D,V] = svd(F);
F = U*diag([D(1,1) D(2,2) 0])*V';
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8-point algorithm

• Pros: linear, easy to implement and fast
• Cons: susceptible to noise
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𝑢!𝑢!´ 𝑣!𝑢!´ 𝑢!´ 𝑢!𝑣!´ 𝑣!𝑣!´ 𝑣!´ 𝑢! 𝑣! 1
𝑢"𝑢"´ 𝑣"𝑢"´ 𝑢"´ 𝑢"𝑣"´ 𝑣"𝑣"´ 𝑣"´ 𝑢" 𝑣" 1
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝑢$𝑢$´ 𝑣$𝑢$´ 𝑢$´ 𝑢$𝑣$´ 𝑣$𝑣$´ 𝑣$´ 𝑢$ 𝑣$ 1

𝑓!!
𝑓!"
𝑓!#
𝑓"!
𝑓""
𝑓"#
𝑓#!
𝑓#"
𝑓##

= 0

Problem with 8-point algorithm
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~10000 ~10000 ~10000 ~10000~100 ~100 1~100 ~100

Orders of magnitude difference
between column of data matrix
® least-squares yields poor results



Normalized 8-point algorithm

normalized least squares yields good results
Transform image to ~[-1,1]x[-1,1]
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Normalized 8-point algorithm

• Transform input by                ,
• Call 8-point on           to obtain
•
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0𝐱𝐢 = 𝐓𝐱𝐢 &𝐱𝐢# = 𝐓𝐱𝐢#

&𝐱𝐢, &𝐱𝐢%

𝐅 = 𝐓′! *𝐅𝐓

)𝐅

𝐱′&𝐅𝐱 = 0

&𝐱′&𝐓′'&𝐅𝐓'! &𝐱 = 0

)𝐅



Normalized 8-point algorithm

A = [x2(1,:)'.*x1(1,:)'   x2(1,:)'.*x1(2,:)'  x2(1,:)' ...
x2(2,:)'.*x1(1,:)'   x2(2,:)'.*x1(2,:)'  x2(2,:)' ...
x1(1,:)'             x1(2,:)'          ones(npts,1) ];       

[U,D,V] = svd(A);

F = reshape(V(:,9),3,3)';

[U,D,V] = svd(F);
F = U*diag([D(1,1) D(2,2) 0])*V';
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% Denormalise
F = T2'*F*T1;

[x1, T1] = normalise2dpts(x1);
[x2, T2] = normalise2dpts(x2);



Results (ground truth)
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Results (ground truth)
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Results (normalized 8-point algorithm)
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What about more than two views?

• The geometry of three views is described by a 3 x 3 x 3 
tensor called the trifocal tensor

• The geometry of four views is described by a 3 x 3 x 3 x 3 
tensor called the quadrifocal tensor

• After this it starts to get complicated…so usually 
numerical solutions are implemented.
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