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Recommended Reading

• Slides from Noah Snavely (Cornell), which states that 
many slides are based on material from Pratul Srinivasan 
(Google)

• Original NeRF project and paper (Two Minutes Papers).
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https://www.cs.cornell.edu/courses/cs5670/2023sp/lectures/lectures.html
https://pratulsrinivasan.github.io/
https://www.matthewtancik.com/nerf
https://arxiv.org/abs/2003.08934
https://www.youtube.com/watch?v=nCpGStnayHk


Last time: Multi View Stereo (MVS)

• Compute depth map per image
• Fuse the depth maps into a 3D model
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Figures by Carlos Hernandez



Computer vision as inverse rendering
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Computer vision as inverse rendering
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Neural Radiance Fields (NeRF) as an 
approach to inverse rendering
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Deep learning for 3D reconstruction

• Previously: we reconstruct geometry by running stereo or 
multi-view stereo on a set of images
– “Classical” approach

• How can we leverage powerful tools of deep learning?
– Deep neural networks
– GPU-accelerated stochastic gradient descent

Prof. Uwe Hahne 8



NeRF and related methods – Key ideas

• We need to create a loss function and a scene 
representation that we can optimize using gradient 
descent to reconstruct the scene

• Differentiable rendering
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Side Topic: Stereo Photography
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Viewing Devices

Stereo Photography
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Queen Victoria at World Fair, 1851

Stereo Photography
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Stereo Photography
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~1.5 cm~6.5 cm

Issue: Narrow Baseline
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3D scene 
representation

…
Output

…
Output Input

Problem Statement
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……
InputOutput Output

Extrapolation

Large disocclusion

Non-Lambertian Effects

Reflections, transparencies, etc.

Challenges
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Input views

Scene
Representation

Neural prediction of scene 
representations

Prof. Uwe Hahne 20

Output views

…

Neural Net

Stereo Magnification: Learning View Synthesis using Multiplane Images
Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe, Noah Snavely
SIGGRAPH 2018
https://tinghuiz.github.io/projects/mpi/

https://tinghuiz.github.io/projects/mpi/


Computer vision as inverse rendering
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Paradigm 1: Feedforward
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à Fast inference for small
networks

Use a “Feedforward” 
network for inverse 

rendering.



Paradigm 2: “Render-and-compare”
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Comparing the rendered
images with the input photos
as loss to update the scene.



What representation to use?

• Could use triangle meshes, but 
hard to differentiate during 
rendering

• Multiplane images (MPIs) are easy 
to differentiate, but only allow for 
rendering a small range of views
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Multiplane Camera (1937)
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Image credits: Disney https://www.youtube.com/watch?v=kN-eCBAOw60  (from 1957)

https://www.youtube.com/watch?v=kN-eCBAOw60


Multiplane Images (MPIs)
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Reference 
Viewpoint

Each plane is at a fixed 
depth and encoded by 

an RGBA image
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NeRF: Representing 
Scenes as Neural 
Radiance Fields for View 
Synthesis
ECCV 2020

Ben Mildenhall*

UC Berkeley

Pratul Srinivasan* Matt Tancik* Jon Barron Ravi Ramamoorthi Ren Ng

UC Berkeley UC Berkeley Google Research UC San Diego UC Berkeley



Neural Volumetric Rendering
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Neural Volumetric Rendering
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Neural Volumetric Rendering
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DIFFERENTIABLE RENDERING WITH A 
NEURAL VOLUMETRIC REPRESENTATION

NeRF means
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Results
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From the original NeRF paper: https://www.matthewtancik.com/nerf

https://www.matthewtancik.com/nerf


Barron et al 2021, Mip-NeRF 360: Unbounded Anti-Aliased Neural Radiance Fields

Results

Prof. Uwe Hahne 40



Barron et al 2021, Mip-NeRF 360: Unbounded Anti-Aliased Neural Radiance Fields

Results
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Results
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Made with LumaAI by Uwe Hahne, Ulm 2023



Results
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Made with LumaAI by Uwe Hahne, Paris 2023



Barron et al 2023, Zip-NeRF: Anti-Aliased Grid-Based Neural Radiance Fields

Results
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Given a set of sparse views of an 
object with known camera poses

3D reconstruction viewable 
from any angle

Optimize a NeRF 
model

Idea
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NeRF Overview

• Volumetric rendering
• Neural networks as representations for spatial data 
• Neural Radiance Fields (NeRF)
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NeRF Overview

• Volumetric rendering
• Neural networks as representations for spatial data
• Neural Radiance Fields (NeRF)
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Traditional volumetric rendering
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• Theory of volume rendering co-opted from 
physics in the 1980s: absorption, emission, 
out-scattering/in-scattering

• Adapted for visualising medical data and 
linked with alpha compositing

• Modern path tracers use sophisticated Monte 
Carlo methods to render volumetric effects

Levoy 1988, Display of Surfaces from Volume Data
Max 1995, Optical Models for Direct Volume Rendering

Kajiya 1984, Ray Tracing Volume Densities
Chandrasekhar 1950, Radiative Transfer

Novak et al 2018, Monte Carlo methods for physically based volume rendering
Porter and Duff 1984, Compositing Digital Images

Ray tracing simulated cumulus cloud [Kajiya]



Traditional volumetric rendering
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Levoy 1988, Display of Surfaces from Volume Data
Max 1995, Optical Models for Direct Volume Rendering

Kajiya 1984, Ray Tracing Volume Densities
Chandrasekhar 1950, Radiative Transfer

Novak et al 2018, Monte Carlo methods for physically based volume rendering
Porter and Duff 1984, Compositing Digital Images

Medical data visualisation [Levoy]

Alpha compositing [Porter and Duff]

• Theory of volume rendering co-opted from physics 
in the 1980s: absorption, emission, out-
scattering/in-scattering

• Adapted for visualising medical data and linked with 
alpha compositing

• Modern path tracers use sophisticated Monte Carlo 
methods to render volumetric effects



Traditional volumetric rendering
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Levoy 1988, Display of Surfaces from Volume Data
Kajiya 1984, Ray Tracing Volume Densities

Max 1995, Optical Models for Direct Volume Rendering

Chandrasekhar 1950, Radiative Transfer

Novak et al 2018, Monte Carlo methods for physically based volume rendering
Porter and Duff 1984, Compositing Digital Images

Physically-based Monte Carlo rendering [Novak et al]

• Theory of volume rendering co-opted from physics 
in the 1980s: absorption, emission, out-
scattering/in-scattering

• Adapted for visualising medical data and linked with 
alpha compositing

• Modern path tracers use sophisticated Monte Carlo 
methods to render volumetric effects



Side topic: Medical imaging (CT)
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Image from Toshiba: http://www.trafita.it/images/stories/TOSHIBA/toshiba16.pdf



Medical Volume Image Rendering
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Using voxel representation
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X-ray absorption coefficient
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µ: Value of one voxel



Projection profiles

• For each measuring beam j a measuring signal Pj is 
obtained as a projection of all picture elements along the 
measuring beam j in the body cross section.
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Algebraic reconstruction 

• Unknown original is approximated iteratively in 3 steps:
     1. estimation, 2. correction, 3. iteration

1. first approximation is derived from starting direction
2. creation of correction profiles
3. iterate over all directions

termination criterion: by presetting an error measure or maximum 
number of iterations
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Unknown original Approximation
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Unknown original Approximation
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Unknown original Approximation
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Unknown original Approximation



Medical Volume Image Rendering
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Volumetric formulation for NeRF
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Scene is a cloud of colored fog

Max and Chen 2010, Local and Global Illumination in the Volume Rendering Integral



Volumetric formulation for NeRF
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Consider a ray traveling through the scene, and 
a point at distance 𝑡 along this ray. We look up 
its color 𝐜(𝑡), and its opacity (alpha value) α(𝑡) 

Camera
at origin

Ray 𝐫(𝑡) = 𝐨 + 𝑡𝐝
o: origin
d: direction

𝑡



Volumetric formulation for NeRF
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But 𝑡 may also be blocked by earlier points along the ray.
𝑇(𝑡): probability that the ray didn’t hit any particles earlier.
𝑇(𝑡) is called “transmittance”

𝑃[no hits before	𝑡] = 𝑇(𝑡)

𝑡



Volume rendering estimation:
integrating color along a ray
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Rendering model for ray 𝐫(𝑡) = 𝐨 + 𝑡𝐝:

How much light is blocked earlier along ray: 3D volume

𝑡9

Camera

Ray

colors
weights

𝐜 ≈ ∑
!"#

$
𝑇!𝛼!𝐜!

𝑇! = ∏
%"#

!&#
(1 − 𝛼%)

𝑡!

𝑡" 𝑇#

𝐜# , 𝛼#
𝑡#

final rendered 
color along ray

Computing the color for 
a set of rays through the 
pixels of an image yields 
a rendered image



Volume rendering estimation:
integrating color along a ray
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3D volume

𝑡9

Camera

Ray

𝑡!

𝑡" 𝑇#

𝐜# , 𝜎#
𝑡#

𝛼! = 1 − exp(−𝜎!𝛿!)

Slight modification: 𝛼 is not directly stored in the volume, 
but instead is derived from a stored volume density sigma 
(σ) that is multiplied by the distance between samples 
delta (δ):

𝛿#
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Volume rendering estimation:
integrating color along a ray
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3D volume

𝑡9

Camera

Ray

𝑡!

𝑡" 𝑇#

𝐜# , 𝜎#
𝑡#

Computing the color for 
a set of rays through the 
pixels of an image yields 
a rendered image

How do we store the values of 
𝐜, 𝜎 at each point in space?



NeRF Overview

• Volumetric rendering
• Neural networks as representations for spatial data
• Neural Radiance Fields (NeRF)
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Toy problem: storing 2D image data
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(𝑥, 𝑦) (𝑟, 𝑔, 𝑏)

Usually we store an image as a 
2D grid of RGB color values



Toy problem: storing 2D image data
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(𝑥, 𝑦) (𝑟, 𝑔, 𝑏)

What if we train a simple fully-connected 
network (MLP) to do this instead?

𝐹'



Naive approach fails!
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Ground truth image Neural network output fit 
with gradient descent



Problem

“Standard” coordinate-based MLPs cannot represent high 
frequency functions.
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Solution

Pass input coordinates through a high frequency mapping 
first.
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Example mapping: “positional 
encoding”
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Positional encoding
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Raw encoding of a number x “Positional encoding” of a number x



Problem solved!
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Ground truth image Neural network output without
high frequency mapping

Neural network output with
high frequency mapping



NeRF Overview

• Volumetric rendering
• Neural networks as representations for spatial data
• Neural Radiance Fields (NeRF)
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VOLUME RENDERING + 
COORDINATE-BASED NEURAL NETWORK

NeRF is a combination of 

Prof. Uwe Hahne 84



How do we store the values of 𝐜, 𝜎 at 
each point in space
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How do we store the values of 𝐜, 𝜎 at 
each point in space
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How do we store the values of 𝐜, 𝜎 at 
each point in space
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How do we store the values of 𝐜, 𝜎 at 
each point in space
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Extension: view-dependent field
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𝑡9𝑡9

3D point and direction

𝐜, 𝜎
MLP
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Include the ray direction in 
the input to the MLP à 
allows for capturing and 

rendering view-dependent 
effects (e.g., shiny surfaces)



Putting it all together
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∇∥ 	 − ∥!

Train network using gradient descent 
to reproduce all input views of scene 
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Volume rendering of 
MLP colors/densities

Ground truth
image



REPETITION AND RESULTS
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NeRF encodes convincing view-dependent 
effects using directional dependence
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NeRF encodes convincing view-dependent 
effects using directional dependence

Prof. Uwe Hahne 99



NeRF encodes detailed scene 
geometry with occlusion effects
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NeRF encodes detailed scene 
geometry with occlusion effects
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NeRF encodes detailed scene geometry
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Summary

• Represent the scene as volumetric colored “fog”
• Store the fog color and density at each point as an MLP 

mapping 3D position (x, y, z) to color c and density σ
• Render image by shooting a ray through the fog for each 

pixel
• Optimize MLP parameters by rendering to a set of known 

viewpoints and comparing to ground truth images
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