

Folien zur Vorlesung am 17.06.2025 3D Computer Vision

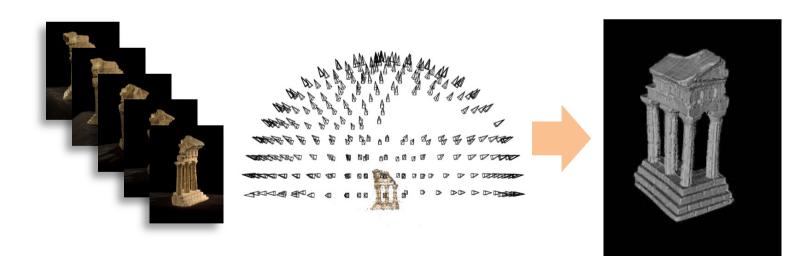
STRUCTURE FROM MOTION

References

- Book:
 - Computer Vision: Algorithms and Applications, Richard Szeliski → In the 2nd Edition Chapter 11, available at <u>http://szeliski.org/book</u>
- Slides:
 - Introduction to Computer Vision, CS5670, Spring 2022, Cornell Tech → Noah Snavely and others: Yung-Yu Chuang, Fredo Durand, Alexei Efros, William Freeman, James Hays, Svetlana Lazebnik, Andrej Karpathy, Fei-Fei Li, Srinivasa Narasimhan, Silvio Savarese, Steve Seitz, Richard Szeliski, and Li Zhang.
 - Most slides are copied from there.
- Videos:
 - Shree Nayar: <u>https://fpcv.cs.columbia.edu/</u> → Today: a summary of the Reconstruction II → Structure from Motion series

Reminder: multi-view stereo

Problem formulation: given several images of the same object or scene, compute a representation of its 3D shape



Structure from motion

- Multi-view stereo assumes that cameras are calibrated
 - Extrinsics and intrinsics are known for all views
- How do we compute calibration if we don't know it? In general, this is called *structure from motion*

Large-scale structure from motion

Dubrovnik, Croatia. 4,619 images (out of an initial 57,845). Total reconstruction time: 23 hours Number of cores: 352

From "Building Rome in a day"

Prof. Uwe Hahne

Two views

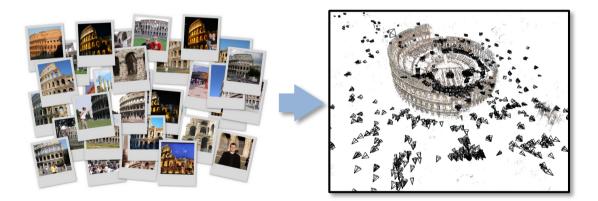
- Solve for Fundamental matrix / Essential matrix
- Factorize into intrinsics, rotation, and translation

What about more than two views?

- The geometry of three views is described by a 3 x 3 x 3 tensor called the *trifocal tensor*
- The geometry of four views is described by a 3 x 3 x 3 x
 3 tensor called the *quadrifocal tensor*
- After this it starts to get complicated...
 - Instead, we explicitly solve for camera poses and scene geometry

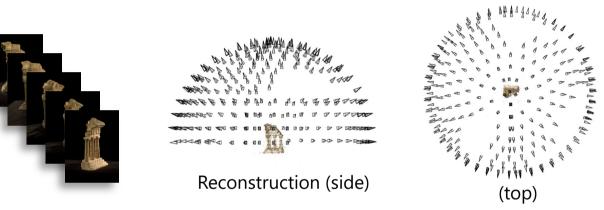
Structure from motion

Given many images, how can we
a) figure out where they were all taken from?
b) build a 3D model of the scene?



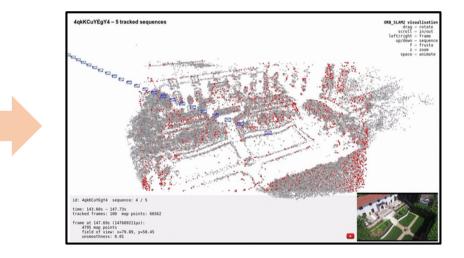
This is the structure from motion (SfM) problem

Structure from motion



- Input: images with 2D points in correspondence $p_{ij} = (u_{ij}, v_{ij})$
- Output
 - structure: 3D location \mathbf{x}_i for each point p_i
 - motion: camera parameters **R**_j, **t**_j & possibly **K**_j
- Objective function: minimize reprojection error

Also doable from video



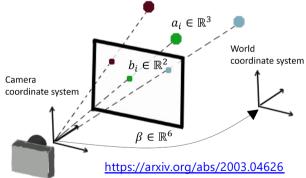
What we've seen so far...

- 2D transformations between images
 - Translations, affine transformations, homographies...
- Fundamental matrices
 - Represent relationships between 2D images in the form of corresponding 2D lines
- What's new: Explicitly representing 3D geometry of cameras and points

Triangulation & camera calibration

- Suppose we have known camera parameters, each of which observes a point
 - How can we compute the 3D location of that point?
 - This is called *triangulation* (known since ancient times)
- On the other hand: Suppose we have known 3D points
 - And have matches between these points and an image
 - How can we compute the camera parameters?
 - This is called *camera calibration* (or *camera resectioning*)

Liu Hui (c. 263), How to measure the height of a sea island.

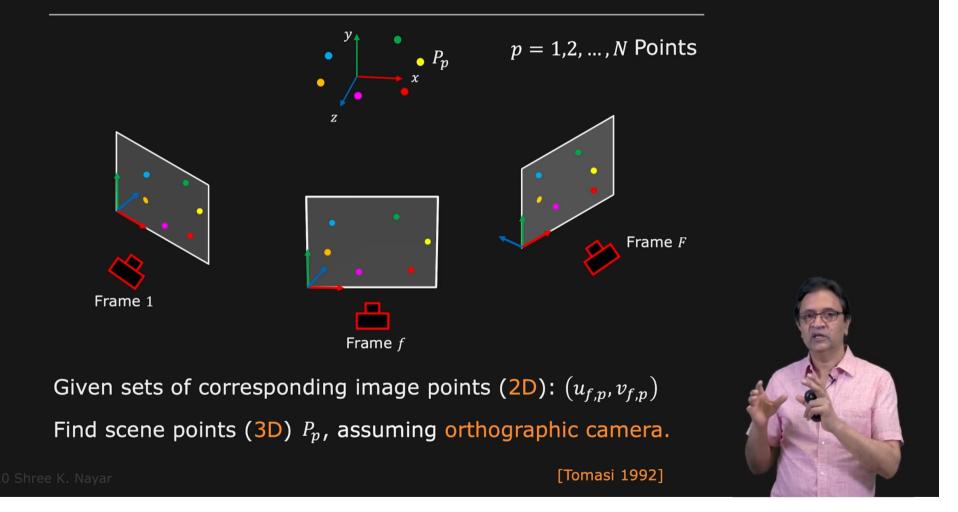


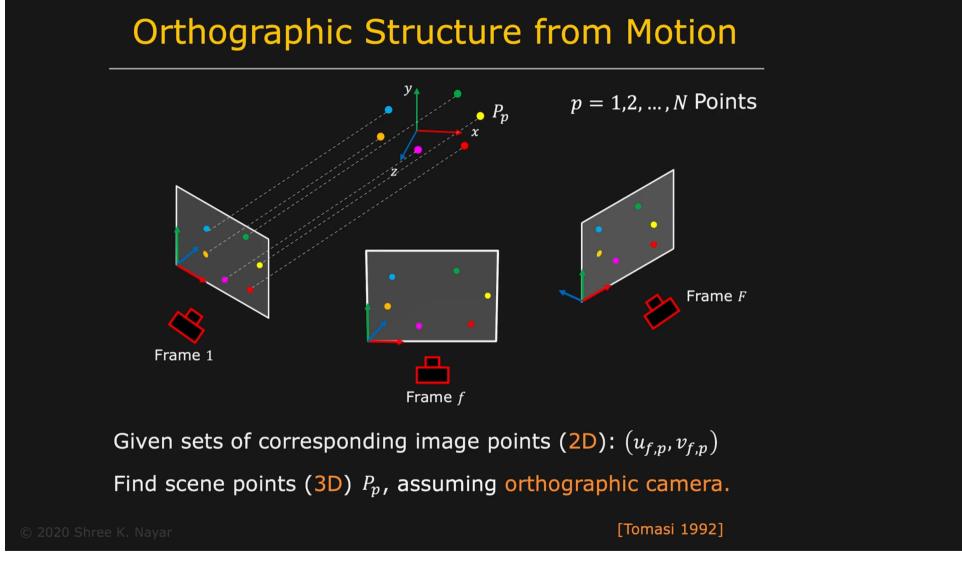
Structure from motion

- What if we don't know 3D points or camera parameters?
- SfM solves both of these problems *at once*
- A kind of chicken-and-egg problem
 - (but solvable)

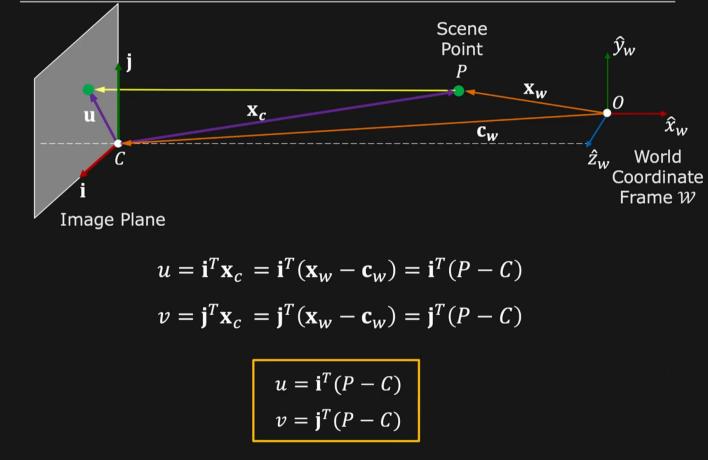
Next: Classic approach using an assumption that simplifies the problem.

Afterwards: Extended approaches...

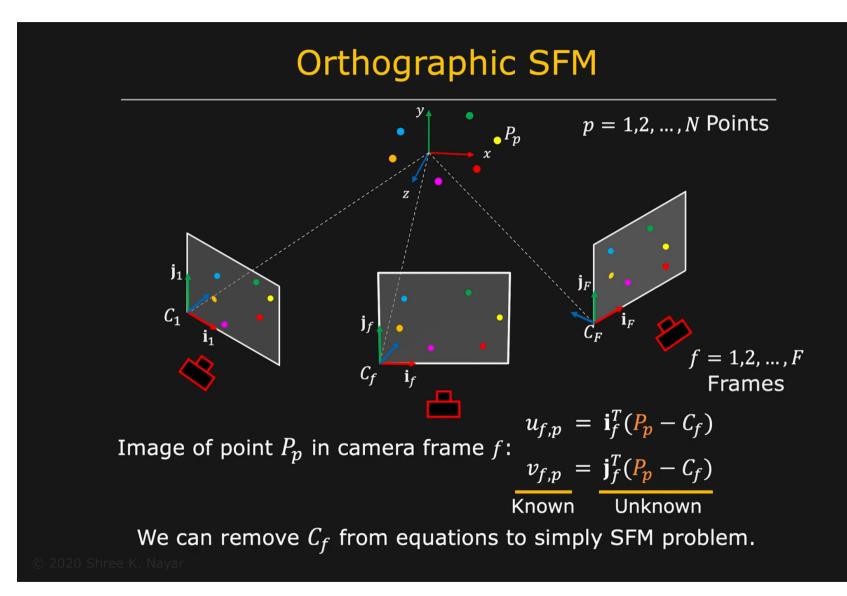




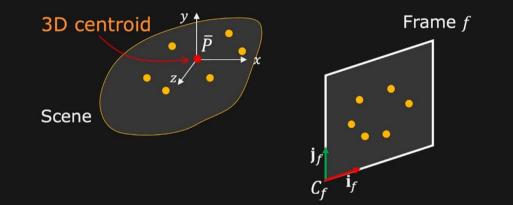
From 3D to 2D: Orthographic Projection



© 2020 Shree K. Nayar



Centering Trick



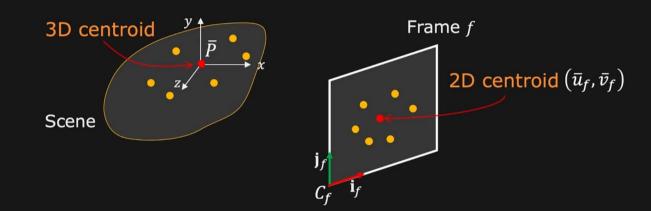
Assume origin of world at centroid of scene points:

$$\frac{1}{N}\sum_{p=1}^{N}P_{p}=\bar{P}=\mathbf{0}$$

We will compute scene points w.r.t their centroid!

© 2020 Shree K. Naya

Centering Trick



Centroid (\bar{u}_f, \bar{v}_f) of the image points in frame f:

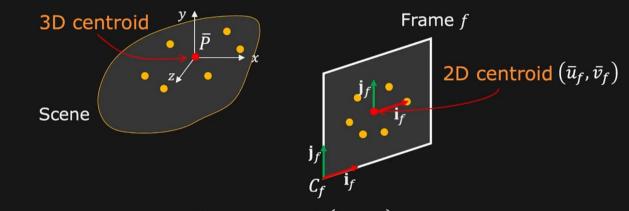
$$\bar{u}_{f} = \frac{1}{N} \sum_{p=1}^{N} u_{f,p} = \frac{1}{N} \sum_{p=1}^{N} \mathbf{i}_{f}^{T} (P_{p} - C_{f}) \qquad \bar{v}_{f} = \frac{1}{N} \sum_{p=1}^{N} v_{f,p} = \frac{1}{N} \sum_{p=1}^{N} \mathbf{j}_{f}^{T} (P_{p} - C_{f})$$

$$\bar{u}_{f} = \frac{1}{N} \mathbf{i}_{f}^{T} \sum_{p=1}^{N} P_{p} - \frac{1}{N} \sum_{p=1}^{N} \mathbf{i}_{f}^{T} C_{f} \qquad \bar{v}_{f} = \frac{1}{N} \mathbf{j}_{f}^{T} \sum_{p=1}^{N} P_{p} - \frac{1}{N} \sum_{p=1}^{N} \mathbf{j}_{f}^{T} C_{f}$$

$$\bar{u}_{f} = -\mathbf{i}_{f}^{T} C_{f}$$

$$\bar{v}_{f} = -\mathbf{j}_{f}^{T} C_{f}$$

Centering Trick



Shift camera origin to the centroid (\bar{u}_f, \bar{v}_f) .

Image points w.r.t. (\bar{u}_f, \bar{v}_f) :

$$\begin{split} \tilde{u}_{f,p} &= u_{f,p} - \bar{u}_f & \tilde{v}_{f,p} &= v_{f,p} - \bar{v}_f \\ &= \mathbf{i}_f^T (P_p - C_f) - \mathbf{i}_f^T C_f & = \mathbf{j}_f^T (P_p - C_f) - \mathbf{j}_f^T C_f \\ \tilde{u}_{f,p} &= \mathbf{i}_f^T P_p & \tilde{v}_{f,p} &= \mathbf{j}_f^T P_p \end{split}$$

Camera locations C_f now removed from equations.

Observation Matrix W

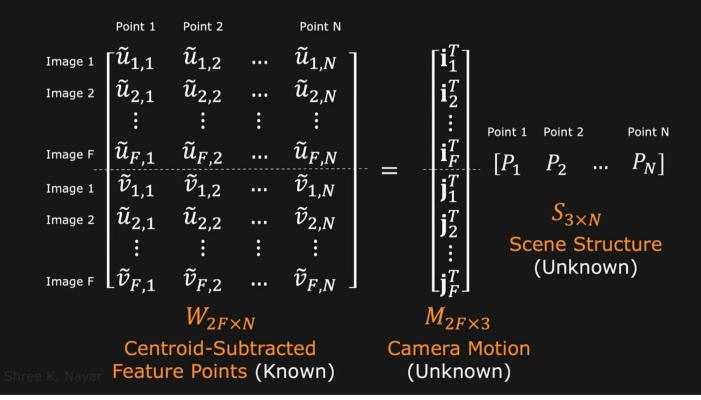
$$\tilde{u}_{f,p} = \mathbf{i}_{f}^{T} P_{p}$$

$$\tilde{v}_{f,p} = \mathbf{j}_{f}^{T} P_{p}$$

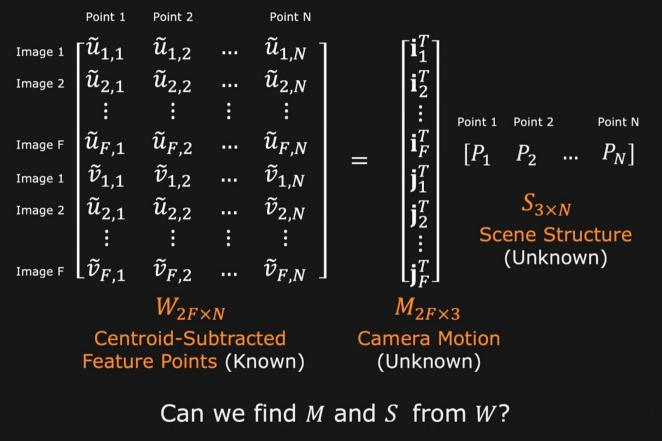
$$\begin{bmatrix} \tilde{u}_{f,p} \\ \tilde{v}_{f,p} \end{bmatrix} = \begin{bmatrix} \mathbf{i}_{f}^{T} \\ \mathbf{j}_{f}^{T} \end{bmatrix} P_{p}$$

$$=$$

Observation Matrix W



Observation Matrix W



© 2020 Shree K. Nayar

Image from Shree Nayar FPCV videos

Prof. Uwe Hahne

Important Properties of Matrix Rank

• $Rank(A^T) = Rank(A)$

•
$$Rank(A_{m \times n}B_{n \times p}) = min(Rank(A_{m \times n}), Rank(B_{n \times p}))$$

 $\leq min(m, n, p)$

•
$$Rank(AA^{T}) = Rank(A^{T}A) = Rank(A^{T}) = Rank(A)$$

•
$$A_{m \times m}$$
 is invertible iff $Rank(A_{m \times m}) = m_{\mathbb{R}}$

O 202 MATH BRIMER

Image from <u>Shree Nayar FPCV videos</u>

Prof. Uwe Hahne

Rank of Observation Matrix

 $W = M \times S$ $_{2F \times N} \qquad _{2F \times 3} \qquad _{3 \times N}$

We know:

 $Rank(MS) \le Rank(M)$ $Rank(MS) \le Rank(S)$

 $Rank(MS) \le \min(3, 2F)$ $Rank(MS) \le \min(3, N)$

 $Rank(W) = Rank(MS) \le \min(3, N, 2F)$

Rank Theorem: $Rank(W) \leq 3$

© 2020 Shree K. Nayar

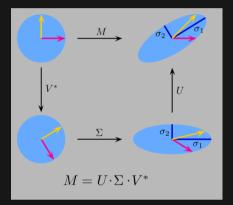
[Tomasi 1992]

Singular Value Decomposition (SVD)

For any matrix *A* there exists a factorization:

$$A_{M \times N} = U_{M \times M} \cdot \Sigma_{M \times N} \cdot V^{T}_{N \times N}$$

where U and V^{T} are orthonormal and Σ is diagonal.
MATLAB: $[U, S, V] = \text{svd}(A)$
$$\Sigma_{M \times N} = \begin{pmatrix} \sigma_{1} & 0 & 0 & 0 & \dots & 0 \\ 0 & \sigma_{2} & 0 & 0 & \dots & 0 \\ 0 & 0 & \sigma_{3} & 0 & \dots & 0 \\ 0 & 0 & 0 & \sigma_{4} & \dots & 0 \\ 0 & 0 & 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & 0 & \dots & \sigma_{N} \\ 0 & 0 & 0 & 0 & \dots & \sigma_{N} \\ 0 & 0 & 0 & 0 & \dots & \sigma_{N} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \dots & \vdots \end{pmatrix} \sigma_{1}, \dots, \sigma_{N}$$
: Singular

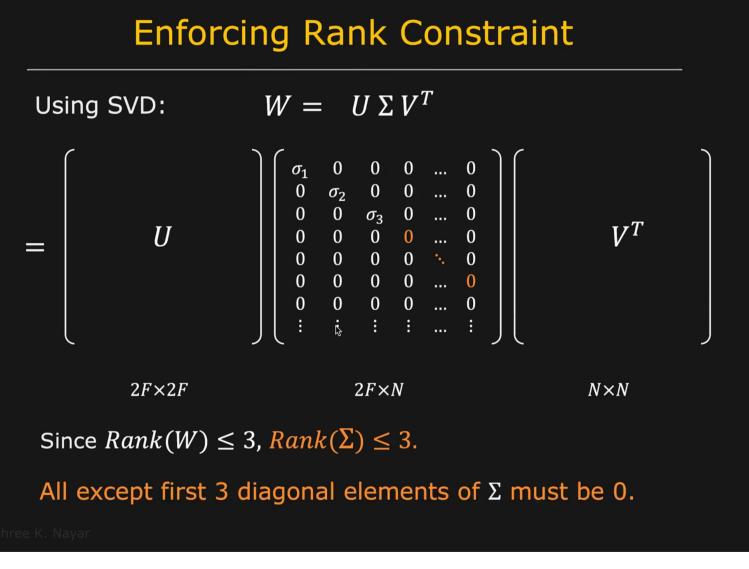


Georg-Johann, CC BY-SA 3.0 <https://creativecommons.org/licenses/by-sa/3.0>, via Wikimedia Commons

ngular Values

If Rank(A) = r then A has r non-zero singular values.

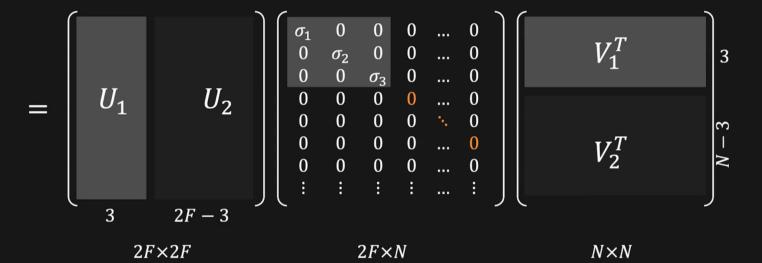
MATH PRIMER



Enforcing Rank Constraint

Using SVD: W

$$W = U \Sigma V^{T}$$



Since $Rank(W) \leq 3$, $Rank(\Sigma) \leq 3$.

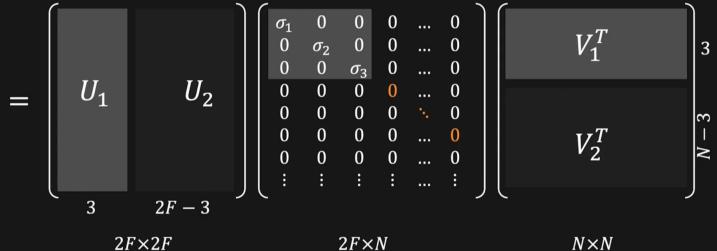
Submatrices U_2 and V_2^T do not contribute to W.

© 2020 Shree K. Nayaı

Enforcing Rank Constraint

Using SVD:

$$W = U \Sigma V^2$$



 $2F \times 2F$

 $N \times N$

$$W = U_1 \Sigma_1 V_1^T$$

$$(2F \times 3)(3 \times 3)(3 \times P)$$

Factorization (Finding M, S)

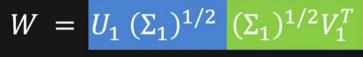
W =	$U_1 \; (\Sigma_1)^{1/2}$	$(\Sigma_1)^{1/2} V_1^T$
	$(2F \times 3)$	$(3 \times N)$
	= M?	= S?

© 20

Image from <u>Shree Nayar FPCV videos</u>

Prof. Uwe Hahne

Factorization (Finding M, S)



 $(2F\times 3) \qquad (3\times N)$

= M? = S?Not so fast. Decomposition not unique!

For any 3x3 non-singular matrix Q:

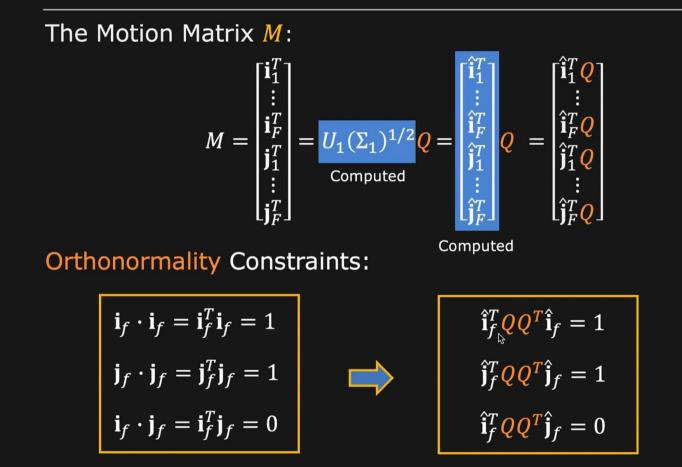
$$W = \bigcup_{1} (\Sigma_{1})^{1/2} Q \quad Q^{-1} (\Sigma_{1})^{1/2} V_{1}^{T} \text{ is also valid.}$$

$$(2F \times 3) \qquad (3 \times N)$$

$$= M \qquad = S \dots \text{ for some } Q.$$
How to find the matrix Q ?

© 2020 Shree K. Nayar

Orthonormality of M



© 2020 Shree K. Nayai

Orthonormality of M

• We have computed $(\hat{\mathbf{i}}_{f}^{T}, \hat{\mathbf{j}}_{f}^{T})$ for f = 1, ..., F.

 $\hat{\mathbf{i}}_{f}^{T} Q Q^{T} \hat{\mathbf{i}}_{f} = 1$ $\hat{\mathbf{j}}_{f}^{T} Q Q^{T} \hat{\mathbf{j}}_{f} = 1$ $\hat{\mathbf{i}}_{f}^{T} Q Q^{T} \hat{\mathbf{j}}_{f} = 0$ Q is unknown.

- *Q* is 3×3 matrix, 9 variables, 3*F* quadratic equations.
- Q can be solved with 3 or more images ($F \ge 3$) using Newton's method.

Final Solution:

$$M = U_1 (\Sigma_1)^{1/2} Q$$
 $S = Q^{-1} (\Sigma_1)^{1/2} V_1^T$ Camera MotionScene Structure

© 2020 Shree K. Naya

Summary: Orthographic SFM

- 1. Detect and track feature points.
- 2. Create the centroid subtracted matrix *W* of corresponding feature points.
- 3. Compute SVD of *W* and enforce rank constraint.

$$W = U \Sigma V^{T} = U_{1} \Sigma_{1} V_{1}^{T}$$

$$(2F \times 3) (3 \times 3) (3 \times P)$$

- 4. Set $M = U_1 (\Sigma_1)^{1/2} Q$ and $S = Q^{-1} (\Sigma_1)^{1/2} V_1^T$.
- 5. Find *Q* by enforcing the orthonormality constraint.

© 2020 Shree K. Nayar

[Tomasi 1992]

Results from 1992

• Input

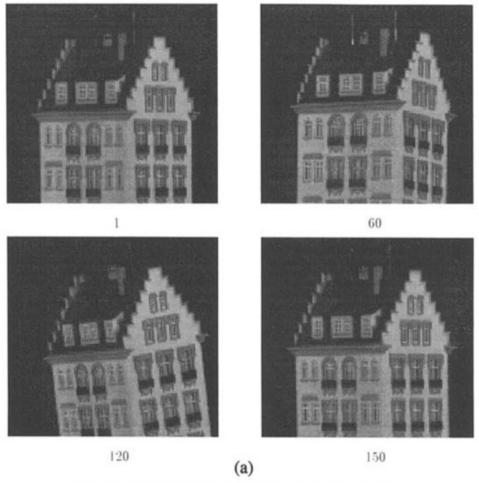


Fig. 2a. The "Hotel" stream: four of the 150 frames.

Image from [Tomasi1992]

Results from 1992

• Resulting 3D reconstruction and new viewpoint rendering

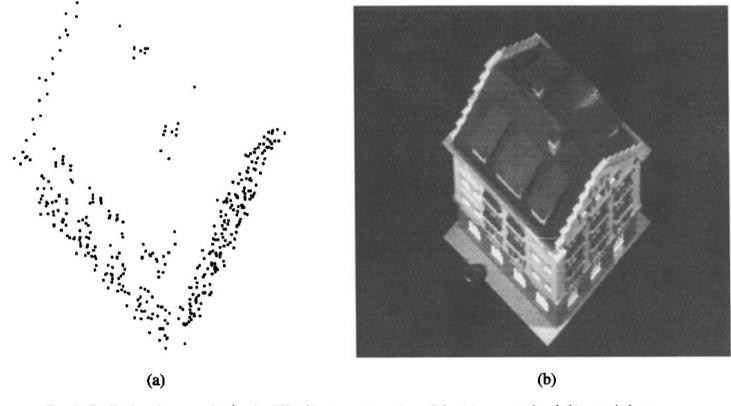


Fig. 4. Qualitative shape results for the "Hotel" stream: top view of the (a) computed and (b) actual shape. Image from [Tomasi1992]

Prof. Uwe Hahne

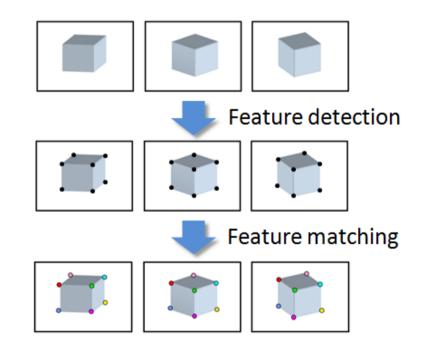
More modern results: Photo Tourism

Photo Tourism Exploring photo collections in 3D

Noah Snavely Steven M. Seitz Richard Szeliski University of Washington Microsoft Research

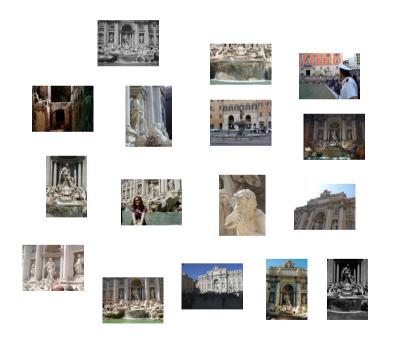
SIGGRAPH 2006

• Feature detection and matching



Feature detection

Detect features using SIFT [Lowe, IJCV 2004]

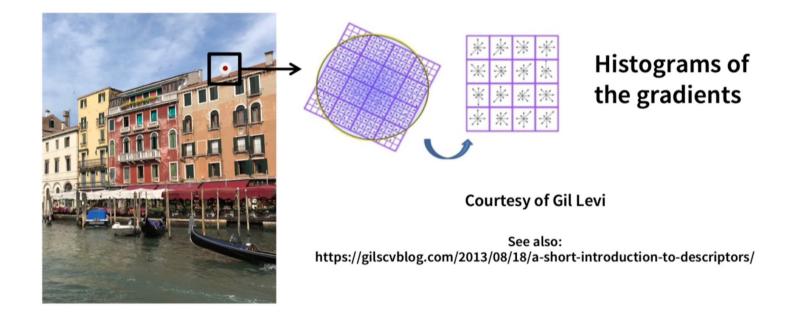


Feature detection

Detect features using **SIFT** [Lowe, IJCV 2004]

Video: Feature Detection

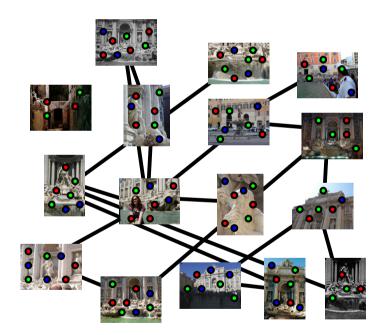
https://www.youtube.com/watch?v=4AvTMVD9ig0



SIFT - 5 Minutes with Cyrill

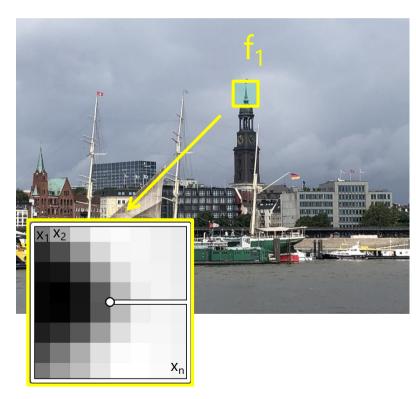
Feature matching

Match features between each pair of images



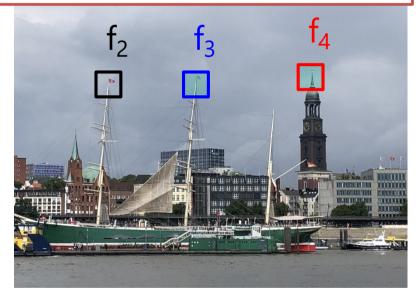
How to measure the difference between f_1 and f_2 , f_3 or f_4 ?

• A simple approach: L₂-distance, $\| \vec{x}_{f_1} - \vec{x}_{f_i} \|$ (aka SSD)*



$$\vec{x}_{f_1} = (x_1, x_2, \dots, x_n)$$

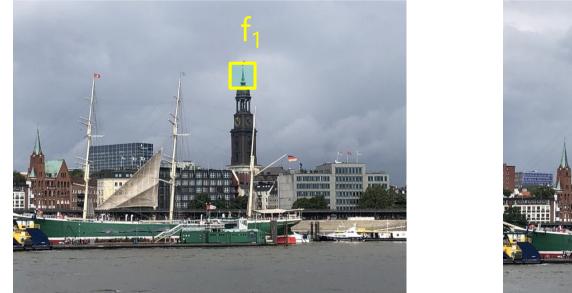
*Attention: It is about the distance of the feature vectors (so for SIFT a 128 dimensional space)



$$\vec{x}_{f_2} = (x'_1, x'_2, \dots, x'_n)$$
$$\vec{x}_{f_3} = (x''_1, x''_2, \dots, x''_n)$$
$$\vec{x}_{f_4} = (x''_1, x''_2, \dots, x'''_n)$$

How to measure the difference between f_1 and f_2 ?

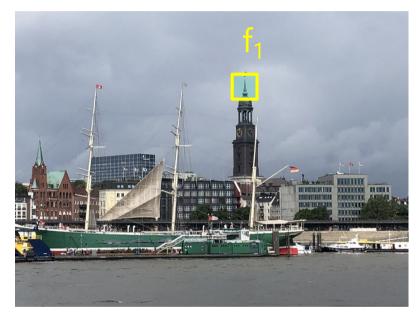
• A simple approach: L₂-distance, $\|\vec{x}_{f_1} - \vec{x}_{f_i}\|$ (aka SSD)



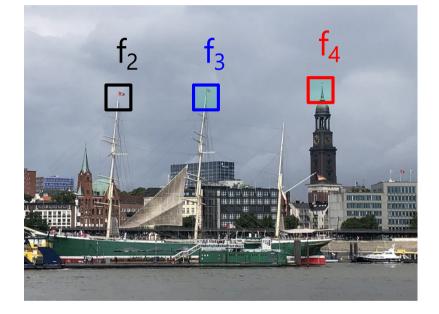
L₂-distance:
$$\|\vec{x}_{f_1} - \vec{x}_{f_2}\| = \sqrt{(x_1 - x_1')^2 + (x_2 - x_2')^2 + \dots + (x_n - x_n')^2}$$

How to measure the difference between f_1 and f_2 , f_3 or f_4 ?

• A simple approach: L₂-distance, $\| \vec{x}_{f_1} - \vec{x}_{f_i} \|$ (aka SSD)



Which L₂-distance is the smallest? **X** L₂(f₁, f₂) = $\|\vec{x}_{f_1} - \vec{x}_{f_2}\|$ **X** L₂(f₁, f₃) = $\|\vec{x}_{f_1} - \vec{x}_{f_3}\|$ L₂(f₁, f₄) = $\|\vec{x}_{f_1} - \vec{x}_{f_4}\|$

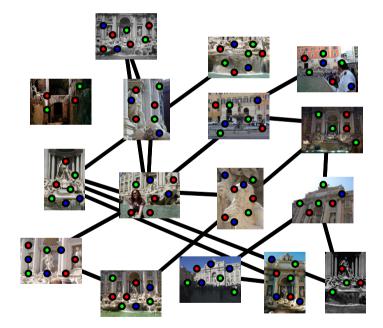


Attention: this can result in small distances for ambiguous (false) matches

- Better approach: ratio distance = || f1 f2 || / || f1 f2' ||
 - f2 is the best SSD match to f1 in I2
 - f2' is the 2nd best SSD match to f1 in I2
 - gives large values for ambiguous matches

Feature matching

Refine matching using <u>RANSAC</u> to estimate fundamental matrix between each pair



Correspondence estimation

• Link up pairwise matches to form connected components of matches across several images

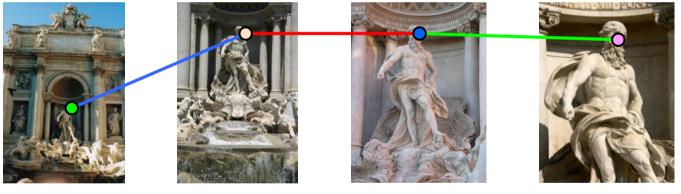


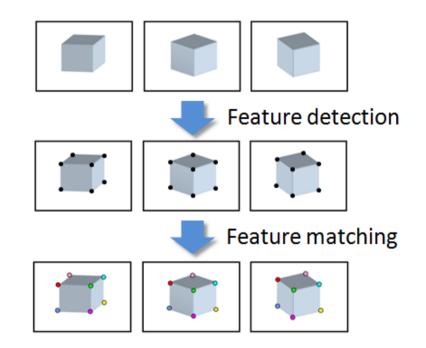
Image 3

Image 4

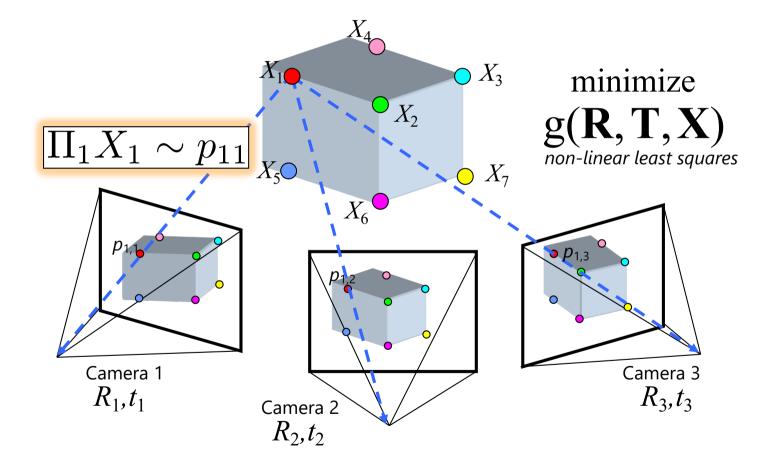
lmage 1

lmage 2

Input to Structure from Motion



Structure from motion

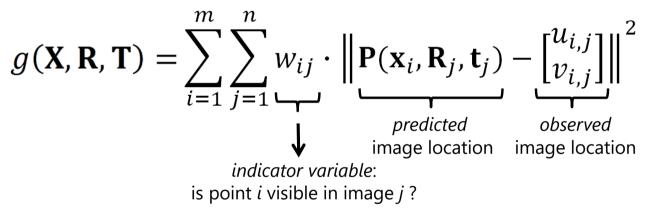


Problem size

- What are the variables?
 - Cameras and points
- How many variables per camera?
 - 6 (if calibrated), more if uncalibrated
- How many variables per point?
 3
- Trevi Fountain collection
 466 input photos
 - + > 100,000 3D points
 - = very large optimization problem

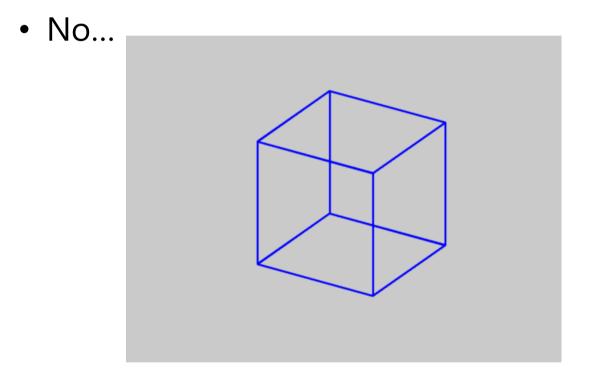
Structure from motion

• Minimize sum of squared reprojection errors:

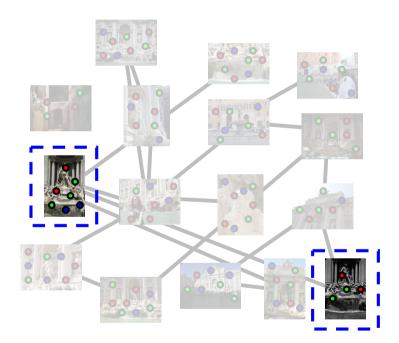


 Minimizing this function is called *bundle adjustment*
 Optimized using non-linear least squares, e.g. Levenberg-Marquardt algorithm

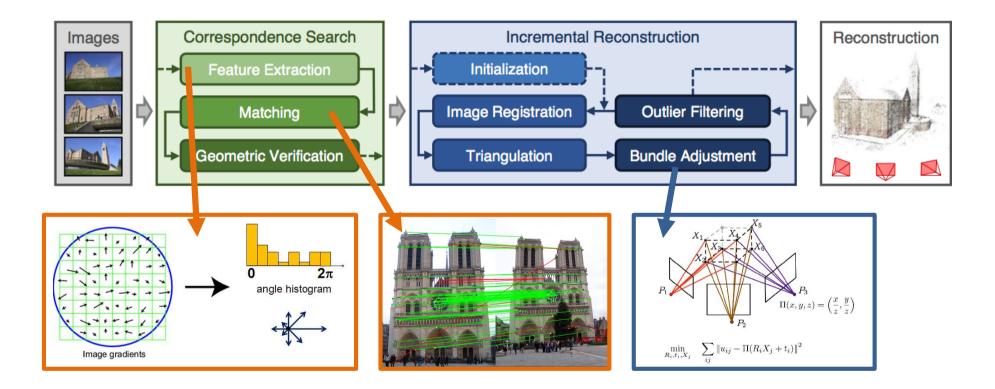
Is SfM always uniquely solvable?



Incremental structure from motion



Complete SfM pipeline

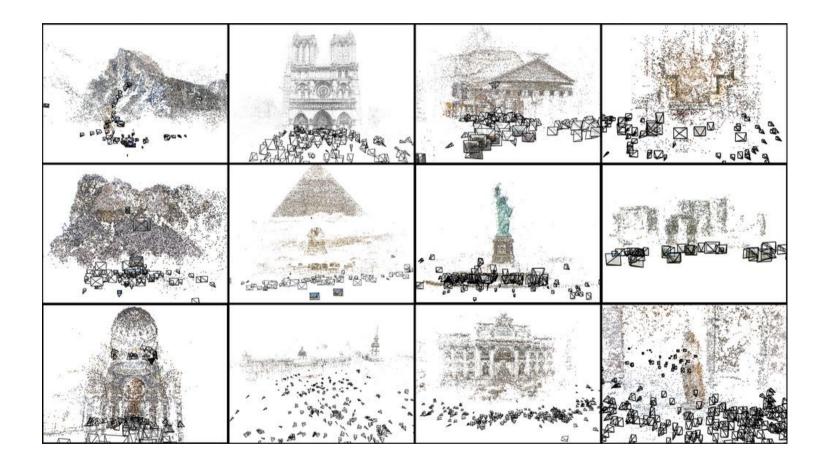


[images from Hays2018, Szeliski2020 and Schönberger2016]

Incremental structure from motion

Video from Noah Snavely: <u>3D Old City of Dubrovnik</u>

BigSFM: Reconstructing the World from Internet Photos

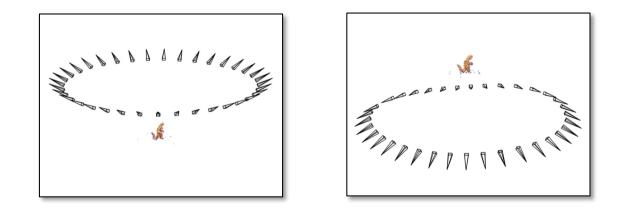


Images from https://www.cs.cornell.edu/projects/bigsfm/ check the site for more results.

Prof. Uwe Hahne

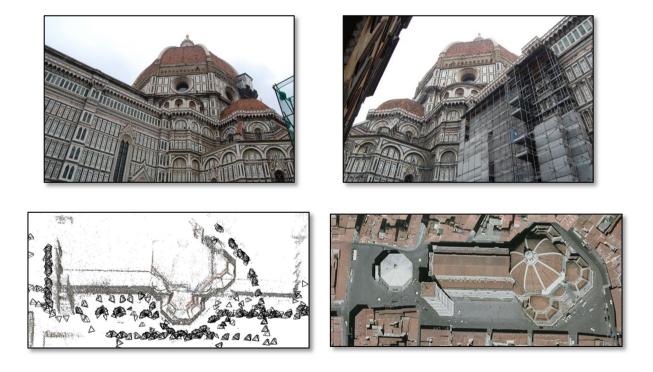
SfM – Failure cases

• Necker reversal



Structure from Motion – Failure cases

• Repetitive structures: Symmetries in man-made scenes



SfM applications

- 3D modeling
- Surveying
- Robot navigation and mapmaking
- Virtual and augmented reality
- Visual effects ("Match moving")
 - <u>https://www.youtube.com/watch?v=RdYWp70P_kY</u>

SfM implementations

 The scientific standard (foss): <u>https://colmap.github.io/</u> COLMAP

Dense models of several landmarks produced by COLMAP's MVS pipeline.

- Agisoft Metashape: <u>https://www.agisoft.com/features/professional-edition/</u>
 - Licenses available at HFU

Photogrammetric triangulation

Processing of various types of imagery: aerial (nadir, oblique), close-range, satellite.

Auto calibration: frame (incl. fisheye), spherical & cylindrical cameras.

Multi-camera projects support.

Scanned images with fiducial marks support.

• see more at <u>https://tu-dresden.de/ Photogrammetrie</u>

Applications: Virtual Reality & Augmented Reality

Oculus https://www.youtube.com/watch?v=KOG7yTz1iTA

Hololens https://www.youtube.com/watch?v=FMtvrTGnP04

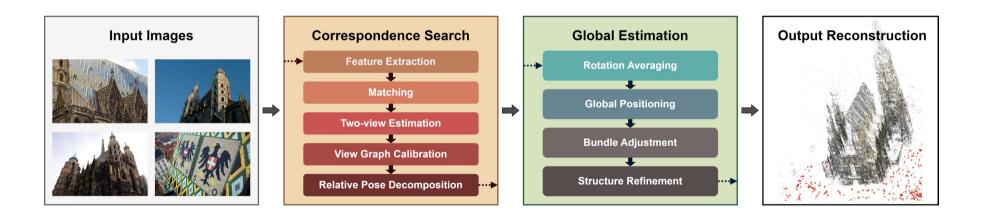
Application: AR walking directions

Feature based localization → <u>ARCore 2022</u>

New trends

• <u>GLOMAP</u>

- Improvement of COLMAP

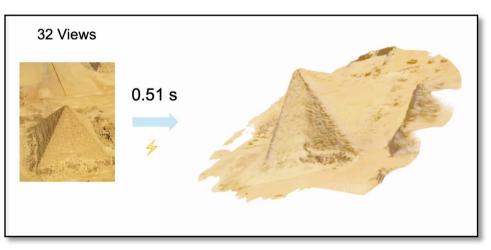


New trends

Dust3r and Mast3r (Naver Labs)

- the idea: do not start from scratch for each scene
- using large visual foundation models (similar to DepthAnything)

VGGT (Oxford + Meta AI)



• More to be explored in the next workshop.