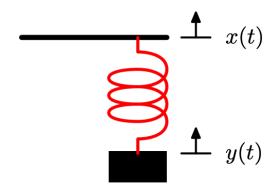
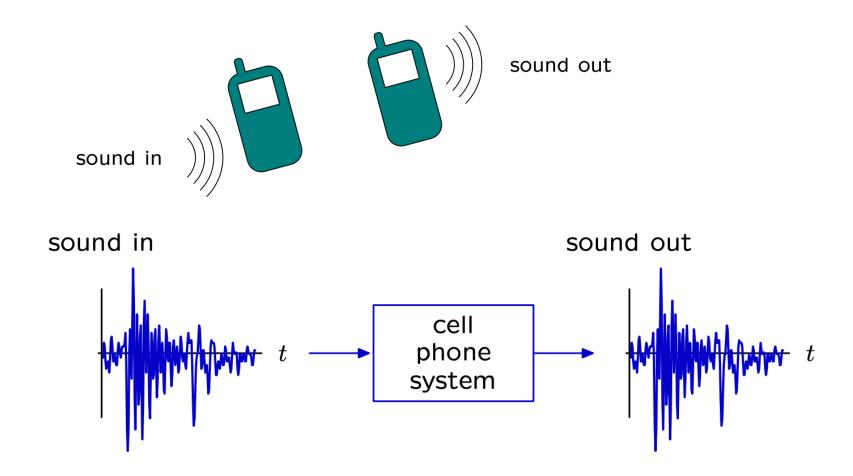

Signale und Systeme

Einführung in Signale und Systeme

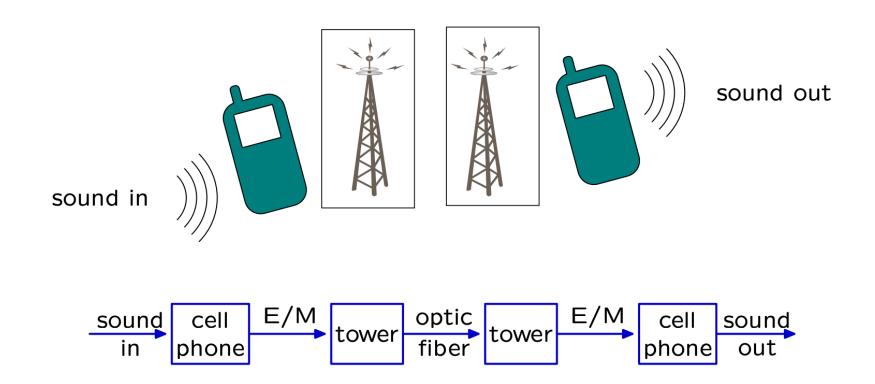
Digitale AV Technik, MIB 5


Was ist ein System?

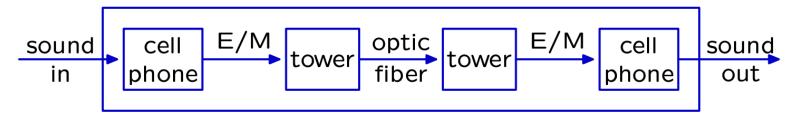

 Wir abstrahieren ein System indem wir uns nur anschauen, was das System für ein Ausgangssignal als Reaktion auf ein Eingangssignal erzeugt.


Beispielsysteme

Ein Masse-Feder System:



Beispielsysteme


Systeme sind modular

Wir betrachten nur den Informationsfluss.

Sytemhierarchien sind möglich

Ein System mit kaskadierten Komponenten

kann auch als ein zusammengesetztes System betrachtet werden

Höraufgabe

Es wird eine Tonaufnahme abgespielt und wir versuchen den Informationsfluss so detailliert wie möglich aufzuzeichnen.

Was ist ein Signal allgemein?

- Bei der Bahn ist ein Signal eine Art Ampel.
- In der Elektronik und Telekommunikation bezieht sich der Begriff Signal auf jede zeitlich veränderliche Spannung, jeden Strom oder jede elektromagnetische Welle, die Informationen übertragen.
- In der Informationstheorie ist ein Signal eine kodierte Nachricht, d. h. die Folge von Zuständen in einem Kommunikationskanal, die eine Nachricht kodiert.

Ebenen der Medien/Kommunikation

Semiotische Ebene	Gegenstand	Wissenschaft
Pragmatik	Wirkung	Psychologie, Medienwissenschaft
Semantik	Bedeutung	Semiotik, Linguistik, Erkenntnistheorie, Ästhetik, Philosophie
Syntaktik, Syntax	Inhalt, Code, Signal	Informationstheorie, Mathematik, Physik

Was ist ein Signal?

- Ein Signal ist eine mathematische Funktion
 - unabhängige Variable (Definitionsbereich): Zeit
 - abhängige Variable (Wertebereich): Spannung, Höhe,
 Schalldruck
- Beispiele für Signale:
 - Spannung in einem Stromkreis
 - Schallwellen (Audiosignale)
 - Temperatur über die Zeit (Sensordaten)
 - Videoframes in einem Videosignal

Was kann man mit einem Signal machen?

Übertragen

- Kabel, Drahtlos
- Codierung, Modulation, Frequenzen, Signalrauschabstand
- Kanalkapazität

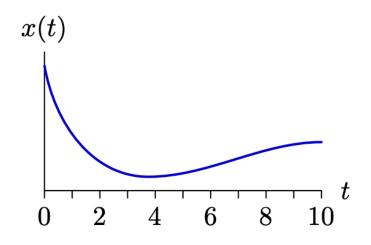
Speichern

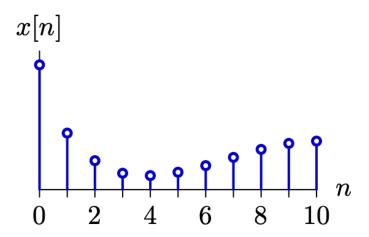
- Speichermedien
- Codierung, Formate
- Kompression

Arten von Signalen

1. Kontinuierliche Signale

- Sind zu jedem Zeitpunkt definiert.
- Beispiel: Musikstück.

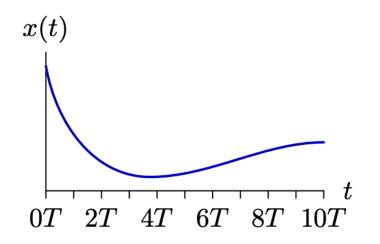

2. Diskrete Signale

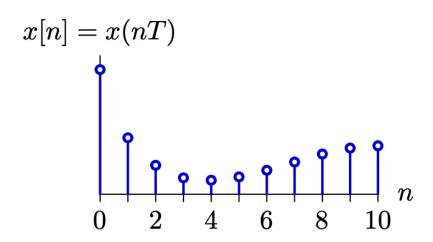

- Sind nur zu bestimmten Zeitpunkten definiert.
- Beispiel: Tägliche Temperaturmessungen.

Kontrollfrage

Ist ein Video ein kontinuierliches Signal?

Sampling: Vom kontinuierlichen zum diskreten Signal

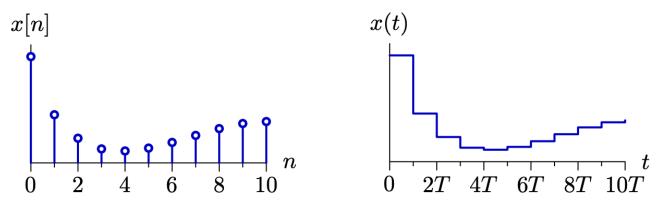




[image from MIT]

Ein Rechner arbeitet in der Regel nur mit diskreten Signalen.

Sampling: Vom kontinuierlichen zum diskreten Signal


T =sampling interval

[image from MIT]

Wird zur Speicherung von Audiosignalen (mp3) oder für digitale Bilder benötigt.

Rekonstruktion kontinuierlicher Signale aus diskreten Signalen

• z.B. Sample-and-Hold-Schaltung (kurz: S&H), wird auch als Abtast-Halte-Glied bezeichnet

T =sampling interval

[image from MIT]

Wird in der Regel bei einem CD-Spieler so gemacht.

Textaufgabe

Bearbeitet das Aufgabenblatt 02

Systemdarstellung

• Ein System wird typischerweise als Transformation eines Eingangssignals zu einem Ausgangssignal dargestellt:

$$y(t) = \mathcal{T}\{x(t)\}$$

Dabei gilt:

- $\circ x(t)$: Eingangssignal
- $\circ y(t)$: Ausgangssignal
- \circ \mathcal{T} : Die Systemtransformation oder Operation

Klassifizierung von Systemen

1. Linear vs Nichtlinear

- Linear: Das System gehorcht dem Superpositionsprinzip.
- Nichtlinear: Der Ausgang ist nicht proportional zum Eingang.

2. Zeitinvariant vs Zeitvariant

- **Zeitinvariant**: Die Eigenschaften des Systems ändern sich nicht mit der Zeit.
- Zeitvariant: Das Verhalten des Systems ändert sich über die Zeit.

Superpositionsprinzip

Wenn ein System durch eine lineare Gleichung beschrieben wird, z.B.:

$$y(t) = a_1 \cdot x_1(t) + a_2 \cdot x_2(t)$$

dann besagt das Superpositionsprinzip, dass die Antwort auf $x_1(t)$ und $x_2(t)$ separat berechnet und addiert werden kann.

Für zwei Eingaben $x_1(t)$ und $x_2(t)$ ist die Ausgabe y(t) des Systems:

$$y(t) = y_1(t) + y_2(t)$$

wobei gilt:

$$y_1(t) = \mathcal{S}[x_1(t)]$$
 und $y_2(t) = \mathcal{S}[x_2(t)]$

mit ${\cal S}$ als Operator des Systems ist.

Homogenität

Das Superpositionsprinzip beinhaltet auch das Homogenitätsprinzip, welches besagt, dass eine skalare Multiplikation des Eingangs zu einer skalaren Multiplikation des Ausgangs führt:

$$\mathcal{S}[c \cdot x(t)] = c \cdot \mathcal{S}[x(t)]$$

Lineare Kombination von Eingaben

Für eine lineare Kombination von Eingängen gilt:

$$\mathcal{S}\left[\sum_{i=1}^n a_i \cdot x_i(t)
ight] = \sum_{i=1}^n a_i \cdot \mathcal{S}[x_i(t)]$$

Das sind die grundlegenden Formeln des Superpositionsprinzips für lineare Systeme. Sie gelten für lineare Differentialgleichungen, zeitinvariante Systeme und andere lineare Modellierungsansätze.

Signale und Systeme: Eine Beziehung

- Signale sind die Eingaben und Ausgaben von Systemen.
- Systeme verarbeiten oder transformieren Signale.
- Beispiel: Ein Audiosignal wird von einem Verstärkersystem verarbeitet, um eine lautere Version desselben Signals zu erzeugen.

Zusammenfassung

- Ein **Signal** übermittelt Informationen und kann kontinuierlich oder diskret sein.
- Ein **System** verarbeitet Eingangssignale, um Ausgangssignale zu erzeugen.
- Systeme können nach Eigenschaften wie Linearität und Zeitinvarianz klassifiziert werden.

Nächste Schritte

Was ist eigentlich Information?