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Aus Sicht der Informationstheorie

Problem Kompression Fehlerkorrektur

Ziel Effizienz Verlässlichkeit

Anwendung Quellencodierung Kanalcodierung
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Algorithmische Perspektive

Problem Fehlerkorrektur

Algorithmen Hamming code

Reed-Solomon Code

Turbo-Code
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hhttps://en.wikipedia.org/wiki/Hamming_code
https://de.wikipedia.org/wiki/Reed-Solomon-Code
https://de.wikipedia.org/wiki/Turbo-Code


Fehlererkennung

Störungen sind unvermeidlich. Zunächst ist es schon mal
hilfreich zu erkennen, ob es einen Fehler bei der

Datenübertragung gab oder nicht.
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 Der erste Bitfehler der Geschichte

Aigeus, König von Athen, wartete besorgt auf die Rückkehr
seines Sohnes Theseus, der nach Kreta gereist war, um gegen

den Minotaurus zu kämpfen. Vor der Abreise hatten sie
vereinbart, dass Theseus bei einer erfolgreichen Rückkehr weiße

Segel setzen würde. Doch auf der Heimfahrt vergaß die
Besatzung vor lauter Freude, die schwarzen Segel gegen weiße

auszutauschen. Als Aigeus die schwarzen Segel sah, nahm er an,
sein Sohn sei tot, und stürzte sich aus Verzweiflung ins Meer.
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Fehler erkennen

Wann sind Fehler überhaupt kritisch?

Wie kann überprüft werden, ob eine Nachricht fehlerfrei
übertragen wurde?

Prof. Uwe Hahne | Fehlerkorrektur | DAVT WiSe 25/26 6



Testsignale

Bildquelle: Rotkaeppchen68 (in de.wikipedia), CC BY-SA 3.0, via Wikimedia Commons

Man sendet ein vereinbartes Signal, dass der Empfänger bereits
kennt. Dadurch lassen sich systematische (also immer wieder

gleich auftretende) Fehler erkennen.
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Blockcodes

Ein Code, also eine Bitkette wird um eine Anzahl Bits erweitert,
die keinen zusätzlichen Inhalt beitragen, sondern zum Schutz der

Daten hinzugefügt werden.
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Paritätsbits

Man prüft die Parität der Daten eines Blocks, also ob sie eine

gerade (oder ungerade) Anzahl an 1en enthalten.
Man verwendet im einfachen Fall nur ein Schutzbit und setzt

dieses so, dass immer eine gerade Anzahl an 1en entsteht.
Der Empfänger prüft einfach die Parität und weiß, dass ein Fehler

dabei war, wenn keine gerade Anzahl an 1en vorliegt.
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Beispiel Parität

Beispiele:

100111 -> Parität 0
1101 -> Parität 1

10101 -> Parität 1

Berechnung im Rechner mit XOR:

def compute_parity(binary_string):
    parity = 0
    for bit in binary_string:
        parity ^= int(bit)
    return parity
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Prüfsummen (checksums)

Bei vielen Anwendungen wird eine Prüfsumme berechnet und
mit übertragen. Der Empfänger berechnet die selbe Summe und

vergleicht das Ergebnis.
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Beispiel: EAN
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Zyklische Redundanzüberprüfung (CRC)

CRC sind weit verbreitet bei der Datenübertragung auch
innerhalb einer Festplatte.

Die Idee ist es den Binärcode als Polynom zu interpretieren.
Dieses Polynom wird dann zyklisch durch ein allen bekanntes

Prüfpolynom dividiert und der Rest wird als Schutzbits
angehängt.

Sehr gute Video-Quelle: Ben Eater
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CRC Übersicht

Wir benötigen folgende Konzepte:

Fehlererkennung mit Modulo-Division

Nachrichtendaten als Polynom

Polynomdivision

Endliche Körper

Diese ermöglichen das Versenden und Überprüfen von

Nachrichten mit CRC sehr effizient bei Wahl eines geeigneten
Generatorpolynoms.
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Fehlererkennung mit Modulo-Division (01)

Wir wollen den Text "Hi!" übertragen. Dieser wird in ASCII
umgewandelt und als Binärzahl interpretiert:

H: 72 --> 01001000
i: 105 --> 01101001
!: 33 --> 00100001

Hi! --> 010010000110100100100001

Was ist das als Zehnerzahl?
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Fehlererkennung mit Modulo-Division (02)

Wir hängen an die Binärzahl noch 16 Nullen an:

01001000 01101001 00100001 00000000 00000000

Was ist das als Zehnerzahl?

--

Wir verwenden im Weiteren kleinere Zahlen zur

Veranschaulichung des Prinzips
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Fehlererkennung mit Modulo-Division (03)

M = 123 sei die Nachricht, die wir übertragen wollen, G = 7 sei
die Prüfzahl. Wir erweitern die Nachricht M um eine Null (Länge

der Prüfzahl): M' = 1230

Wir berechnen M' mod G = 1230 mod 7 = 5 und übertragen den

kombinierten Wert T = M' + G - (M' mod G) = 1230 + 7 - 5 =
1232

Der Empfänger erhält also 1232 und kann nun prüfen, ob die
Nachricht korrekt übertragen wurde. Da 1232 mod 7 = 0, also ist

die Nachricht korrekt.

Wenn der Empfänger 1332 erhält, kann er feststellen, dass die

Nachricht fehlerhaft ist, da 1332 mod 7 = 2.
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Nachrichtendaten als Polynom

Binärzahlen stellen ja immer die Zweierpotenzen dar:

Das können wir auch als Polynom interpretieren:

Analog: 
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Polynomdivision

Polynome kann man dividieren wie Zahlen.

Bsp:

 und 

Wie kann man die Lösung binär darstellen?
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Problem bei negativen Zahlen

Bei der herkömmlichen Polynomdivision können negative Zahlen
auftreten, z.B.  mit  im obigen Beispiel.

Für einen Binärcode brauchen wir aber nur die Zahlen 0 und 1.
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Endliche Körper (engl.: finite fields) (1)

Wir arbeiten mit dem endlichen Körper  oder auch GF(2)

genannt.

Folie aus dem ersten Semester!
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Endliche Körper (engl.: finite fields) (2)

 enthält nur die Elemente 0 und 1, sowie die Operationen

Addition und Multiplikation.

Für einen endlichen Körper gilt:

Es gibt eine Addition und eine Multiplikation, die beide
abgeschlossen sind.

Es gibt neutrale und inverse Elemente für Addition und

Multiplikation.

Addition und Multiplikation sind kommutativ und assoziativ.

Es gilt das Distributivgesetz: .
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Endliche Körper (engl.: finite fields) (3)

Addition: „normal Addieren dann mod. 2 rechnen“

entspricht XOR
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Endliche Körper (engl.: finite fields) (4)

Multiplikation: „normal Multiplizieren, dann mod. 2 rechnen“

entspricht AND
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Endliche Körper (engl.: finite fields) (5)

Prüfe:

Gibt es neutrale und inverse Elemente für Addition und
Multiplikation? Und wenn ja, welche sind es?

Sind Addition und Multiplikation kommutativ und

assoziativ?

Gilt das Distributivgesetz: .
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Polynomdivision im 

 und 

 Polynome als Binärzahlen darstellen:

 und 

1001
11
--
010
 11
 --
 011
  11
  --
   0

Kein Rest, also wäre es eine richtig übertragene Nachricht.
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CRC Algorithmus

1. Stelle Polynome binär dar und hänge an die Nachricht P-1

Nullen, wobei P die Länge des Prüfpolynoms ist.

2. Verschiebe den Divisor soweit nach links bis die führenden
Stellen übereinstimmen

3. Berechne ein XOR zwischen Dividend und dem
verschobenen Divisor

4. Falls das Ergebnis des XOR einen geringeren Grad als der

Divisor hat ist dies der Rest der Division, andernfalls weiter
mit Schritt 2 wobei das Ergebnis des XOR den neuen

Dividend bildet.

5. Hänge den Rest an die Nachricht an.
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CRC Anwendung

Der Empfänger kann nun die Nachricht mit dem
Prüfpolynom dividieren und prüfen, ob der Rest 0 ist. Falls ja,

ist die Nachricht korrekt übertragen worden.

Das Prüfpolynom muss also bekannt sein, damit der
Empfänger die Nachricht überprüfen kann.

In der Praxis werden Prüfpolynome verwendet, die eine
hohe Fehlererkennungsrate haben. Diese sind in der Regel

standardisiert, z.B. CRC32.
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Beispiel (Schritt 1)

Nachricht sei "Hi" als Binärzahl:

H: 72 --> 01001000
i: 105 --> 01101001

Hi --> 0100100001101001

Nachricht um 2 Nullen erweitern (Länge des Prüfpolynoms

minus 1):

0100100001101001 00

Prüfpolynom sei 101
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Beispielrechnung (Schritt 2 + 3)

Verschiebe den Divisor soweit nach links bis die führenden
Stellen übereinstimmen:

0100100001101001 00
 101

Berechne ein XOR zwischen Dividend und dem verschobenen
Divisor

0100100001101001 00
 101
 ------
0001100001101001 00

und das ganze solange, bis...
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Beispielrechnung (Schritt 2 + 3 wiederholt)

0001100001101001 00
   101
  ------
0000111001101001 00
    101
   ------
0000010001101001 00
     101
    ------
0000000101101001 00
       101
      ------
0000000000101001 00
          101
        ------
...
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Beispielrechnung (Schritt 4)

...der Divisor null ist und nur noch ein Rest übrig bleibt:

0000000000000001 00
               1 01
-------------------
0000000000000000 01
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Beispielrechnung (Schritt 5)

Hänge den Rest an die Nachricht an:

010010000110100100 01

Der Empfänger kann nun die Nachricht mit dem Prüfpolynom

dividieren und prüfen, ob der Rest 0 ist. Falls ja, ist die Nachricht
korrekt übertragen worden.
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Fazit Fehlererkennung

Einfache Paritätschecks und Prüfsummen wie EAN können nur
erkennen, ob es einen Fehler bei der Übertragung gab, aber nicht

wo. Daher lässt sich der Fehler auch nicht korrigieren.

CRC kann Fehler erkennen und auch korrigieren, aber nur wenn

die Anzahl der Fehler begrenzt ist. Je nach Länge und Wert des
Prüfpolynoms kann CRC auch mehrere Fehler erkennen und

korrigieren.
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Fehlerkorrektur

Wie könnte man mit Hilfe der Prüfzeichen oder Prüfbits
erkennen, wo genau der Fehler liegt?
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Mehrdimensionale Paritätsbits

Grundidee: Verwende ein Paritätsbit für Zeilen (also für die
einzelnen Codeworte) und eins für die Spalten (also für die

einzelnen Bits in den Codeworten).
Beispiel:

1 0 0 1 0 1 1 
 0 1 1 0 1 1 0 

 1 0 1 0 1 1 0 
 1 0 0 0 0 0 1 

 1 0 1 1 1 1 1 
 1 1 1 0 1 0 0 

 1 0 0 0 0 0 1

Overhead: 2n + 1
zusätzliche Bits für n^2

Datenbits

3-fehlererkennend

1-fehlerkorrigierend
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Was sind Hamming-Codes?

Hamming-Codes sind eine Form von fehlerkorrigierenden

Codes, die in digitalen Kommunikationssystemen
verwendet werden.

Sie können Einzelfehler korrigieren und mehrere Fehler

erkennen.

Im folgenden sind einige Screenshots aus dem sehr zu

empfehlenden Video von Grant Sanderson: 3Blue1Brown -
Hamming Codes
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Wie funktionieren Hamming-Codes? (1)

1. Datenbits und Paritätsbits:

- Datenbits werden durch
zusätzliche Paritätsbits

ergänzt (grün hinterlegt im Bild
rechts).

- Die Positionen der
Paritätsbits folgen einer 2er-

Potenz-Reihe: 1, 2, 4, 8, usw.
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Wie funktionieren Hamming-Codes? (2)

2. Berechnung der

Paritätsbits:
- Jedes Paritätsbit prüft eine

bestimmte Menge von
Datenbits.

- Das Ziel: Sicherstellen, dass
die Anzahl der 1en in einer

bestimmten Gruppe von Bits
gerade (oder ungerade) ist.
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Wie funktionieren Hamming-Codes? (3)

3. Fehlerkorrektur

- Wenn ein Fehler auftritt, kann
der Ort des Fehlers durch die

kombinierte Ausgabe der
Paritätsbits genau bestimmt

werden.
- Das fehlerhafte Bit wird dann

einfach umgekippt um den
Fehler zu korrigieren.
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Wichtige Konzepte des Verfahrens:

Redundanz: Zusätzliche Bits werden hinzugefügt, um

Fehler erkennen zu können.

Hamming-Distanz: Die minimale Anzahl von Bitflips, die

erforderlich ist, um einen gültigen Code in einen anderen zu
verwandeln. Hamming-Codes haben eine Distanz von 3,

was bedeutet, dass sie einen Fehler korrigieren und zwei
Fehler erkennen können.

Syndromberechnung: Die Ausgabe der Paritätsbits ergibt

ein sogenanntes Syndrom, das direkt den fehlerhaften
Bitindex angibt.
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Warum ist das Video so gut?

3Blue1Brown verwendet anschauliche Animationen, um

das komplexe Thema leicht verständlich zu machen.

Er erklärt die logischen Grundlagen auf eine intuitive

Weise, die sowohl für Anfänger als auch für Fortgeschrittene
interessant ist.

Hier nochmal der Link zum Video:
3Blue1Brown - Hamming Codes
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Ausblick

Reed-Solomon Codes

Turbocodes werden nicht in der Vorlesung behandelt, aber sind

ein sehr interessantes Thema. Sie werden in der Praxis
verwendet, z.B. in Mobilfunknetzen.
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