
Fehlerkorrektur

Digitale AV Technik, MIB 5

Prof. Uwe Hahne | Fehlerkorrektur | DAVT WiSe 25/26 1

Aus Sicht der Informationstheorie

Problem Kompression Fehlerkorrektur

Ziel Effizienz Verlässlichkeit

Anwendung Quellencodierung Kanalcodierung

Prof. Uwe Hahne | Fehlerkorrektur | DAVT WiSe 25/26 2

Algorithmische Perspektive

Problem Fehlerkorrektur

Algorithmen Hamming code

Reed-Solomon Code

Turbo-Code

Prof. Uwe Hahne | Fehlerkorrektur | DAVT WiSe 25/26 3

hhttps://en.wikipedia.org/wiki/Hamming_code
https://de.wikipedia.org/wiki/Reed-Solomon-Code
https://de.wikipedia.org/wiki/Turbo-Code

Fehlererkennung

Störungen sind unvermeidlich. Zunächst ist es schon mal
hilfreich zu erkennen, ob es einen Fehler bei der

Datenübertragung gab oder nicht.

Prof. Uwe Hahne | Fehlerkorrektur | DAVT WiSe 25/26 4

 Der erste Bitfehler der Geschichte

Aigeus, König von Athen, wartete besorgt auf die Rückkehr
seines Sohnes Theseus, der nach Kreta gereist war, um gegen

den Minotaurus zu kämpfen. Vor der Abreise hatten sie
vereinbart, dass Theseus bei einer erfolgreichen Rückkehr weiße

Segel setzen würde. Doch auf der Heimfahrt vergaß die
Besatzung vor lauter Freude, die schwarzen Segel gegen weiße

auszutauschen. Als Aigeus die schwarzen Segel sah, nahm er an,
sein Sohn sei tot, und stürzte sich aus Verzweiflung ins Meer.

Prof. Uwe Hahne | Fehlerkorrektur | DAVT WiSe 25/26 5

Fehler erkennen

Wann sind Fehler überhaupt kritisch?

Wie kann überprüft werden, ob eine Nachricht fehlerfrei
übertragen wurde?

Prof. Uwe Hahne | Fehlerkorrektur | DAVT WiSe 25/26 6

Testsignale

Bildquelle: Rotkaeppchen68 (in de.wikipedia), CC BY-SA 3.0, via Wikimedia Commons

Man sendet ein vereinbartes Signal, dass der Empfänger bereits
kennt. Dadurch lassen sich systematische (also immer wieder

gleich auftretende) Fehler erkennen.

Prof. Uwe Hahne | Fehlerkorrektur | DAVT WiSe 25/26 7

https://commons.wikimedia.org/wiki/File:FuBK_testcard_vectorized.svg
https://creativecommons.org/licenses/by-sa/3.0

Blockcodes

Ein Code, also eine Bitkette wird um eine Anzahl Bits erweitert,
die keinen zusätzlichen Inhalt beitragen, sondern zum Schutz der

Daten hinzugefügt werden.

Prof. Uwe Hahne | Fehlerkorrektur | DAVT WiSe 25/26 8

https://de.wikipedia.org/wiki/Blockcode

Paritätsbits

Man prüft die Parität der Daten eines Blocks, also ob sie eine

gerade (oder ungerade) Anzahl an 1en enthalten.
Man verwendet im einfachen Fall nur ein Schutzbit und setzt

dieses so, dass immer eine gerade Anzahl an 1en entsteht.
Der Empfänger prüft einfach die Parität und weiß, dass ein Fehler

dabei war, wenn keine gerade Anzahl an 1en vorliegt.

Prof. Uwe Hahne | Fehlerkorrektur | DAVT WiSe 25/26 9

https://de.wikipedia.org/wiki/Parit%C3%A4tsbit

Beispiel Parität

Beispiele:

100111 -> Parität 0
1101 -> Parität 1

10101 -> Parität 1

Berechnung im Rechner mit XOR:

def compute_parity(binary_string):
 parity = 0
 for bit in binary_string:
 parity ^= int(bit)
 return parity

Prof. Uwe Hahne | Fehlerkorrektur | DAVT WiSe 25/26 10

Prüfsummen (checksums)

Bei vielen Anwendungen wird eine Prüfsumme berechnet und
mit übertragen. Der Empfänger berechnet die selbe Summe und

vergleicht das Ergebnis.

Prof. Uwe Hahne | Fehlerkorrektur | DAVT WiSe 25/26 11

https://de.wikipedia.org/wiki/Pr%C3%BCfsumme
https://en.wikipedia.org/wiki/Checksum

Beispiel: EAN

Prof. Uwe Hahne | Fehlerkorrektur | DAVT WiSe 25/26 12

Zyklische Redundanzüberprüfung (CRC)

CRC sind weit verbreitet bei der Datenübertragung auch
innerhalb einer Festplatte.

Die Idee ist es den Binärcode als Polynom zu interpretieren.
Dieses Polynom wird dann zyklisch durch ein allen bekanntes

Prüfpolynom dividiert und der Rest wird als Schutzbits
angehängt.

Sehr gute Video-Quelle: Ben Eater

Prof. Uwe Hahne | Fehlerkorrektur | DAVT WiSe 25/26 13

https://de.wikipedia.org/wiki/Zyklische_Redundanzpr%C3%BCfung
https://en.wikipedia.org/wiki/Cyclic_redundancy_check
https://www.youtube.com/watch?v=izG7qT0EpBw

CRC Übersicht

Wir benötigen folgende Konzepte:

Fehlererkennung mit Modulo-Division

Nachrichtendaten als Polynom

Polynomdivision

Endliche Körper

Diese ermöglichen das Versenden und Überprüfen von

Nachrichten mit CRC sehr effizient bei Wahl eines geeigneten
Generatorpolynoms.

Prof. Uwe Hahne | Fehlerkorrektur | DAVT WiSe 25/26 14

Fehlererkennung mit Modulo-Division (01)

Wir wollen den Text "Hi!" übertragen. Dieser wird in ASCII
umgewandelt und als Binärzahl interpretiert:

H: 72 --> 01001000
i: 105 --> 01101001
!: 33 --> 00100001

Hi! --> 010010000110100100100001

Was ist das als Zehnerzahl?

Prof. Uwe Hahne | Fehlerkorrektur | DAVT WiSe 25/26 15

Fehlererkennung mit Modulo-Division (02)

Wir hängen an die Binärzahl noch 16 Nullen an:

01001000 01101001 00100001 00000000 00000000

Was ist das als Zehnerzahl?

--

Wir verwenden im Weiteren kleinere Zahlen zur

Veranschaulichung des Prinzips

Prof. Uwe Hahne | Fehlerkorrektur | DAVT WiSe 25/26 16

Fehlererkennung mit Modulo-Division (03)

M = 123 sei die Nachricht, die wir übertragen wollen, G = 7 sei
die Prüfzahl. Wir erweitern die Nachricht M um eine Null (Länge

der Prüfzahl): M' = 1230

Wir berechnen M' mod G = 1230 mod 7 = 5 und übertragen den

kombinierten Wert T = M' + G - (M' mod G) = 1230 + 7 - 5 =
1232

Der Empfänger erhält also 1232 und kann nun prüfen, ob die
Nachricht korrekt übertragen wurde. Da 1232 mod 7 = 0, also ist

die Nachricht korrekt.

Wenn der Empfänger 1332 erhält, kann er feststellen, dass die

Nachricht fehlerhaft ist, da 1332 mod 7 = 2.

Prof. Uwe Hahne | Fehlerkorrektur | DAVT WiSe 25/26 17

Nachrichtendaten als Polynom

Binärzahlen stellen ja immer die Zweierpotenzen dar:

Das können wir auch als Polynom interpretieren:

Analog:

Prof. Uwe Hahne | Fehlerkorrektur | DAVT WiSe 25/26 18

Polynomdivision

Polynome kann man dividieren wie Zahlen.

Bsp:

 und

Wie kann man die Lösung binär darstellen?

Prof. Uwe Hahne | Fehlerkorrektur | DAVT WiSe 25/26 19

Problem bei negativen Zahlen

Bei der herkömmlichen Polynomdivision können negative Zahlen
auftreten, z.B. mit im obigen Beispiel.

Für einen Binärcode brauchen wir aber nur die Zahlen 0 und 1.

Prof. Uwe Hahne | Fehlerkorrektur | DAVT WiSe 25/26 20

Endliche Körper (engl.: finite fields) (1)

Wir arbeiten mit dem endlichen Körper oder auch GF(2)

genannt.

Folie aus dem ersten Semester!

Prof. Uwe Hahne | Fehlerkorrektur | DAVT WiSe 25/26 21

https://en.wikipedia.org/wiki/GF(2)

Endliche Körper (engl.: finite fields) (2)

 enthält nur die Elemente 0 und 1, sowie die Operationen

Addition und Multiplikation.

Für einen endlichen Körper gilt:

Es gibt eine Addition und eine Multiplikation, die beide
abgeschlossen sind.

Es gibt neutrale und inverse Elemente für Addition und

Multiplikation.

Addition und Multiplikation sind kommutativ und assoziativ.

Es gilt das Distributivgesetz: .

Prof. Uwe Hahne | Fehlerkorrektur | DAVT WiSe 25/26 22

Endliche Körper (engl.: finite fields) (3)

Addition: „normal Addieren dann mod. 2 rechnen“

entspricht XOR

Prof. Uwe Hahne | Fehlerkorrektur | DAVT WiSe 25/26 23

Endliche Körper (engl.: finite fields) (4)

Multiplikation: „normal Multiplizieren, dann mod. 2 rechnen“

entspricht AND

Prof. Uwe Hahne | Fehlerkorrektur | DAVT WiSe 25/26 24

Endliche Körper (engl.: finite fields) (5)

Prüfe:

Gibt es neutrale und inverse Elemente für Addition und
Multiplikation? Und wenn ja, welche sind es?

Sind Addition und Multiplikation kommutativ und

assoziativ?

Gilt das Distributivgesetz: .

Prof. Uwe Hahne | Fehlerkorrektur | DAVT WiSe 25/26 25

Polynomdivision im

 und

 Polynome als Binärzahlen darstellen:

 und

1001
11
--
010
 11
 --
 011
 11
 --
 0

Kein Rest, also wäre es eine richtig übertragene Nachricht.
Prof. Uwe Hahne | Fehlerkorrektur | DAVT WiSe 25/26 26

CRC Algorithmus

1. Stelle Polynome binär dar und hänge an die Nachricht P-1

Nullen, wobei P die Länge des Prüfpolynoms ist.

2. Verschiebe den Divisor soweit nach links bis die führenden
Stellen übereinstimmen

3. Berechne ein XOR zwischen Dividend und dem
verschobenen Divisor

4. Falls das Ergebnis des XOR einen geringeren Grad als der

Divisor hat ist dies der Rest der Division, andernfalls weiter
mit Schritt 2 wobei das Ergebnis des XOR den neuen

Dividend bildet.

5. Hänge den Rest an die Nachricht an.

Prof. Uwe Hahne | Fehlerkorrektur | DAVT WiSe 25/26 27

CRC Anwendung

Der Empfänger kann nun die Nachricht mit dem
Prüfpolynom dividieren und prüfen, ob der Rest 0 ist. Falls ja,

ist die Nachricht korrekt übertragen worden.

Das Prüfpolynom muss also bekannt sein, damit der
Empfänger die Nachricht überprüfen kann.

In der Praxis werden Prüfpolynome verwendet, die eine
hohe Fehlererkennungsrate haben. Diese sind in der Regel

standardisiert, z.B. CRC32.

Prof. Uwe Hahne | Fehlerkorrektur | DAVT WiSe 25/26 28

https://en.wikipedia.org/wiki/Cyclic_redundancy_check#Standards_and_common_use
https://en.wikipedia.org/wiki/Cyclic_redundancy_check#Polynomial_representations

Beispiel (Schritt 1)

Nachricht sei "Hi" als Binärzahl:

H: 72 --> 01001000
i: 105 --> 01101001

Hi --> 0100100001101001

Nachricht um 2 Nullen erweitern (Länge des Prüfpolynoms

minus 1):

0100100001101001 00

Prüfpolynom sei 101

Prof. Uwe Hahne | Fehlerkorrektur | DAVT WiSe 25/26 29

Beispielrechnung (Schritt 2 + 3)

Verschiebe den Divisor soweit nach links bis die führenden
Stellen übereinstimmen:

0100100001101001 00
 101

Berechne ein XOR zwischen Dividend und dem verschobenen
Divisor

0100100001101001 00
 101

0001100001101001 00

und das ganze solange, bis...

Prof. Uwe Hahne | Fehlerkorrektur | DAVT WiSe 25/26 30

Beispielrechnung (Schritt 2 + 3 wiederholt)

0001100001101001 00
 101

0000111001101001 00
 101

0000010001101001 00
 101

0000000101101001 00
 101

0000000000101001 00
 101

...

Prof. Uwe Hahne | Fehlerkorrektur | DAVT WiSe 25/26 31

Beispielrechnung (Schritt 4)

...der Divisor null ist und nur noch ein Rest übrig bleibt:

0000000000000001 00
 1 01

0000000000000000 01

Prof. Uwe Hahne | Fehlerkorrektur | DAVT WiSe 25/26 32

Beispielrechnung (Schritt 5)

Hänge den Rest an die Nachricht an:

010010000110100100 01

Der Empfänger kann nun die Nachricht mit dem Prüfpolynom

dividieren und prüfen, ob der Rest 0 ist. Falls ja, ist die Nachricht
korrekt übertragen worden.

Prof. Uwe Hahne | Fehlerkorrektur | DAVT WiSe 25/26 33

Fazit Fehlererkennung

Einfache Paritätschecks und Prüfsummen wie EAN können nur
erkennen, ob es einen Fehler bei der Übertragung gab, aber nicht

wo. Daher lässt sich der Fehler auch nicht korrigieren.

CRC kann Fehler erkennen und auch korrigieren, aber nur wenn

die Anzahl der Fehler begrenzt ist. Je nach Länge und Wert des
Prüfpolynoms kann CRC auch mehrere Fehler erkennen und

korrigieren.

Prof. Uwe Hahne | Fehlerkorrektur | DAVT WiSe 25/26 34

Fehlerkorrektur

Wie könnte man mit Hilfe der Prüfzeichen oder Prüfbits
erkennen, wo genau der Fehler liegt?

Prof. Uwe Hahne | Fehlerkorrektur | DAVT WiSe 25/26 35

Mehrdimensionale Paritätsbits

Grundidee: Verwende ein Paritätsbit für Zeilen (also für die
einzelnen Codeworte) und eins für die Spalten (also für die

einzelnen Bits in den Codeworten).
Beispiel:

1 0 0 1 0 1 1
 0 1 1 0 1 1 0

 1 0 1 0 1 1 0
 1 0 0 0 0 0 1

 1 0 1 1 1 1 1
 1 1 1 0 1 0 0

 1 0 0 0 0 0 1

Overhead: 2n + 1
zusätzliche Bits für n^2

Datenbits

3-fehlererkennend

1-fehlerkorrigierend

Prof. Uwe Hahne | Fehlerkorrektur | DAVT WiSe 25/26 36

Was sind Hamming-Codes?

Hamming-Codes sind eine Form von fehlerkorrigierenden

Codes, die in digitalen Kommunikationssystemen
verwendet werden.

Sie können Einzelfehler korrigieren und mehrere Fehler

erkennen.

Im folgenden sind einige Screenshots aus dem sehr zu

empfehlenden Video von Grant Sanderson: 3Blue1Brown -
Hamming Codes

Prof. Uwe Hahne | Fehlerkorrektur | DAVT WiSe 25/26 37

https://www.3blue1brown.com/lessons/hamming-codes
https://www.3blue1brown.com/lessons/hamming-codes

Wie funktionieren Hamming-Codes? (1)

1. Datenbits und Paritätsbits:

- Datenbits werden durch
zusätzliche Paritätsbits

ergänzt (grün hinterlegt im Bild
rechts).

- Die Positionen der
Paritätsbits folgen einer 2er-

Potenz-Reihe: 1, 2, 4, 8, usw.

Prof. Uwe Hahne | Fehlerkorrektur | DAVT WiSe 25/26 38

Wie funktionieren Hamming-Codes? (2)

2. Berechnung der

Paritätsbits:
- Jedes Paritätsbit prüft eine

bestimmte Menge von
Datenbits.

- Das Ziel: Sicherstellen, dass
die Anzahl der 1en in einer

bestimmten Gruppe von Bits
gerade (oder ungerade) ist.

Prof. Uwe Hahne | Fehlerkorrektur | DAVT WiSe 25/26 39

Wie funktionieren Hamming-Codes? (3)

3. Fehlerkorrektur

- Wenn ein Fehler auftritt, kann
der Ort des Fehlers durch die

kombinierte Ausgabe der
Paritätsbits genau bestimmt

werden.
- Das fehlerhafte Bit wird dann

einfach umgekippt um den
Fehler zu korrigieren.

Prof. Uwe Hahne | Fehlerkorrektur | DAVT WiSe 25/26 40

Wichtige Konzepte des Verfahrens:

Redundanz: Zusätzliche Bits werden hinzugefügt, um

Fehler erkennen zu können.

Hamming-Distanz: Die minimale Anzahl von Bitflips, die

erforderlich ist, um einen gültigen Code in einen anderen zu
verwandeln. Hamming-Codes haben eine Distanz von 3,

was bedeutet, dass sie einen Fehler korrigieren und zwei
Fehler erkennen können.

Syndromberechnung: Die Ausgabe der Paritätsbits ergibt

ein sogenanntes Syndrom, das direkt den fehlerhaften
Bitindex angibt.

Prof. Uwe Hahne | Fehlerkorrektur | DAVT WiSe 25/26 41

Warum ist das Video so gut?

3Blue1Brown verwendet anschauliche Animationen, um

das komplexe Thema leicht verständlich zu machen.

Er erklärt die logischen Grundlagen auf eine intuitive

Weise, die sowohl für Anfänger als auch für Fortgeschrittene
interessant ist.

Hier nochmal der Link zum Video:
3Blue1Brown - Hamming Codes

Prof. Uwe Hahne | Fehlerkorrektur | DAVT WiSe 25/26 42

https://www.3blue1brown.com/lessons/hamming-codes

Ausblick

Reed-Solomon Codes

Turbocodes werden nicht in der Vorlesung behandelt, aber sind

ein sehr interessantes Thema. Sie werden in der Praxis
verwendet, z.B. in Mobilfunknetzen.

Prof. Uwe Hahne | Fehlerkorrektur | DAVT WiSe 25/26 43

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43

