
Digitale AV-Technik - Aufgabenblatt 10
Thema: Fehlererkennung und -korrektur
Ziele:

Rechnen mit XOR üben und Parität verstehen

Prüfsummen kennen lernen

Verständnis der Hamming-Code-Struktur und der Platzierung von Daten- und Paritätsbits.

Aufgabe 1: Paritäten ermitteln
Ermitteln Sie die (gerade) Parität der folgenden Bitketten:

11010110010

01000100

Prüfen Sie ob man mit dem folgenden Python-Code parity.py die Parität ermitteln kann:

def compute_parity(binary_string):
 parity = 0
 for bit in binary_string:
 parity ^= int(bit)
 return parity

Erklären Sie, wie der Code funktioniert und ob er die Parität korrekt berechnet.

Digitale AV-Technik

Prof. Uwe Hahne

Wintersemester 2025/26

https://github.com/uhahne/DAVT_python/blob/main/parity.py

Aufgabe 2: EAN Prüfziffer
Ermitteln Sie online wie die Prüfziffer beim EAN Code berechnet wird und prüfen Sie nach ob diese

auf dem folgenden Bild korrekt ist.

Aufgabe 3: CRC ermitteln
Ermitteln Sie für die Bitfolge 11011 und das Prüfpolynom

den Restwert, der an die Bitfolge angehängt wird.

Hinweis: Für die Bitfolge 11011 und den aus dem Prüfpolynom erstellten Prüfwert (Länge

), ergibt sich der Rahmen 1101100000 (Bitfolge um Nullen verlängert). Anschließend

wird der Rahmen durch das Prüfpolynom dividiert.

Das Ergebnis hat nun nur noch drei relevante Stellen, also werden die letzten Stellen

als CRC-Wert übernommen. Die Bitfolge und der Rest ergeben die zu übertragenden Daten.

Verifizieren Sie als Empfänger die Korrektheit der Daten, indem Sie eine Polynomdivision mit dem

Rahmen und dem Prüfwert durchführen:

Hinweis: Die Lösung dieser Aufgabe findet sich hier.

x +5 x +4 x +2 1

P = 6
P − 1 = 5

P − 1 = 5

https://de.wikipedia.org/wiki/Zyklische_Redundanzpr%C3%BCfung

Aufgabe 4: Fehlererkennung mit CRC
In der Vorlesung wurde die Nachricht "Hi" mit dem CRC-Polynom codiert und mit dem Rest

"11" angehängt übertragen. Welcher Restwert würde bei der fehlerhaften Übertragung der

Nachricht "Hh" entstehen?

Hinweis: Verwenden Sie die ASCII-Codes für "H" und "h", also 72 und 104. Die Nachricht wird in

eine Bitfolge umgewandelt, indem die ASCII-Codes in Binärzahlen umgewandelt werden.

Anschließend wird der CRC-Wert aus der Vorlesung angehängt.

Hinweis: Schauen Sie sich den Python Code crc.py und seine Quelle an, um zu verstehen, wie

man die Stelle des Bitfehlers findet.

x +2 1

https://github.com/uhahne/DAVT_python/blob/main/crc.py
https://srfilipek.medium.com/on-correcting-bit-errors-with-crcs-1f1c98fc58b

Aufgabe 5: Fülle den Hamming-Block korrekt aus
Ein Hamming(15,11)-Code erweitert 11 Datenbits mit 4 Paritätsbits also insgesamt 15 Bits, um

Fehler erkennen und korrigieren zu können. In dieser Aufgabe lernen Sie, wie man den Hamming-

Block korrekt mit Daten- und Paritätsbits füllt. Diese Aufgabe wird auch im Video von 3blue1brown

gestellt.

Hinweis: Verwenden Sie immer das Even Parity-Verfahren (gerade Anzahl von 1en).

Gegeben sind die folgenden 11 Datenbits:

Platzieren Sie diese Datenbits an den richtigen Positionen im Hamming-Block und ergänzen Sie

die Paritätsbits so, dass der Code fehlerfrei übertragen werden kann.

Jedes Paritätsbit prüft eine bestimmte Gruppe von Bits. Führen Sie die Berechnungen für die

Paritätsbits an den Stellen 1, 2, 4 und 8 durch.

Um Ihnen klarzuwerden, welches Paritätsbit welchen Bereich überprüft, schreiben Sie die Indizes

aller Zellen in binärer Form auf.

Prüfen Sie, wie der Hamming-Code auf einen Bitfehler reagiert.

Nehmen Sie an, dass das Bit an Position 6 fehlerhaft übertragen wurde.

Berechnen Sie das Syndrom, um den Fehler zu erkennen.

Korrigieren Sie den Fehler im Hamming-Code.

Zur Überprüfung ihrer Lösung können Sie den Python Code hamming_3b1b.py verwenden und

sich den zweiten Teil des Videos von 3blue1brown anschauen.

01001101100

https://www.3blue1brown.com/lessons/hamming-codes
https://github.com/uhahne/DAVT_python/blob/main/hamming_3b1b.py
https://www.3blue1brown.com/lessons/hamming-codes-2

