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Motivation

Generative Kl kann heute aus einem Textprompt:
* Bilder erzeugen

* Videos zu erzeugen

* Audio & Musik erzeugen

Kernfrage:

Wie versteht das Modell den Text - und wie nutzt es ihn, um andere Modalitaten
Zu erzeugen?



Grundidee

Ablauf der Textsteuerung
Textprompt wird eingegeben

Text wird tokenisiert —also in einzelne Worter oder Teile zerlegt

Tokens werden zu Embeddings

Transformer erzeugt kontextuelle Bedeutung
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Ergebnis: ein Textvektor (Steuervektor)

6. Generatives Modell sucht eine Ausgabe, die zu diesem Vektor passt
Wichtig:
Dieser Steuervektor ist die zentrale Kontrolleinheit bei Text-zu-Bild/Video/Audio.



Text-Embeddings

* Jeder Prompt wird in einen hochdimensionalen Vektor Ubersetzt
* Der Vektor enthalt semantische Infos uber:

* Objekte

* Eigenschaften

* Beziehungen
e Stil

* Dieser Vektorist der Steuerhebel fur die generative K



CLIP: Grundlage moderner Modelle

* CLIP (OpenAl, 2021) = Contrastive Language-Image Pretraining
Was ist CLIP?

* CLIPistein Modell, das Text- und Bildinformationen in einem gemeinsamen
semantischen Raum abbildet.

* CLIP ist auf 400 Millionen Bild-Text-Paaren trainiert
 Daten stammen aus ungefilterten Internetquellen

* deutlich groBer und vielfaltiger als klassische Datensatze wie ImageNet



Wie CLIP lernt: Contrastive Learning

Grundidee:
CLIP lernt, welche Texte zu welchen Bildern gehoren, indem es

Millionen ungefilterte Bild-Text-Paare aus dem Internet verwendet.

Trainingsprinzip: Contrastive Learning

Flrjeden Batch (Beispiel: 5 Bilder + 5 Texte):

* Bildencoder wandelt jedes Bild in einen Vektor um

* Textencoder wandelt jeden Text in einen Vektor um

 CLIP berechnet eine Ahnlichkeitsmatrix zwischen allen Bild-Text-Kombinationen (z. B. 5x5 Kombinationen)
Ziel:

* Dierichtigen Paare (Bild <> passender Text) sollen eine hohe Ahnlichkeit haben

* Alle anderen Kombinationen sollen niedrige Ahnlichkeit haben



Wie CLIP lernt; Contrastive Learnin
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Warum CLIP so wichtig ist

CLIP ermoglicht:

* die Abbildung von Text- und Bildinhalten in einen gemeinsamen semantischen
Raum

* die Bewertung der Ubereinstimmung zwischen generierten Inhalten und Textprompt

* Orientierung fur das Modell im latenten Raum

CLIP istdie Grundlage moderner Text-zu-Bild/Video/Audio-Modelle. Es erzeugt selbst
nichts, sondern es bewertet, ob etwas zum Prompt passt.



DINO: Self-Supervised Vision Transformer

DINO & DINOv2 (Meta Al)

Self-Supervised Vision Transformer (ViT)
Kerngedanken:

* Lerntvisuelle Reprasentationen ohne Labels

* Erkennt Objekte und Strukturen sehr zuverlassig
* Funktioniert stabil fur viele Bildtypen

* Liefert starke Features fur Multimodalitat
Bedeutung fir Text-zu-X:

* CLIP verbindet Text + Bild

* DINO verbessert die Bildseite (Encoder)

* Invielen modernen Multimodal-Modellen wird DINOv2 als Encoder genutzt
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Wie funktioniert DINO?

DINO besteht aus zwei Netzwerken:

* Teacher-Netzwerk

* Student-Netzwerk

Beide sehen unterschiedliche Ausschnitte des gleichen Bildes.

Trainingsprinzip:

* DerTeacher erzeugt eine stabile Reprasentation seiner Bildansicht.

* Der Student sieht eine andere Ansicht desselben Bildes.

* Der Student versucht, die Darstellungsweise des Teachers nachzuahmen (zu matches).

* Das Teacher-Netzwerk wird durch ein EMA-Update (Exponential Moving Average) des Student-
Netzwerks aktualisiert.

Dadurch lernt DINO semantisch sinnvolle Features zu erkennen, komplett ohne Labels oder Texte.
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Steuerung durch Textprompts

Drei zentrale Mechanismen:
1. Cross-Attention

* Das Modell schaut bei jedem Schritt ,,auf den Prompt®,
> Welche Worter sind gerade relevant?

2. Conditioning
* Textvektoren modulieren interne Schichten des Modells.
3. Guidance

* Das Modell berechnet gleichzeitig:
o Generierung mit Prompt

o Generierung ohne Prompt
> Differenz = ,,Was will der Text?“
> Verstarkung = prazisere Kontrolle

* Ergebnis: Textprompts sind prazise Steueranweisungen.
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Was Prompts steuern konnen

Prompts kontrollieren:
* Inhalt: Objekte, Szenen, Handlungen

Eigenschaften: GroBe, Farbe, Formen

Stil: Fotorealismus, Cartoon, Surrealismus

Atmosphare: moody, dramatic, warm

Komposition: centered, top-down, wide shot

* Negativprompts: ,no text® ,,no blur®, ,no watermark®

Ein einziges Wort kann die gesamte Generierung verandern.
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Prompt-Beispiele

* JAsmallcatonabed.”
> GroBe andert die Attribut-Dimension im Embedding

e ,A catin front of a House.”
2 Text kodiert raumliche Beziehungen

* »A cat. Cozy atmosphere. Dimm lighting.”
- Stil- und Lichtdimensionen werden aktiviert

* Ein einziges Wort kann die gesamte Ausgabe verandern.
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Generative Modelle fur Text>Modalitaten

Diffusionsmodelle (z. B. Stable Diffusion)

* Entfernen schrittweise Rauschen

* Text steuert jeden Schritt durch Cross-Attention
Video-Modelle (z. B. Sora, Runway Gen-3)

* Video als Sequenz latenter Tokens

* Text sorgt fur zeitliche Konsistenz
Audiomodelle (z. B. AudioLM, MusicGen)

* Audio wird Frame fur Frame vorhergesagt

* Text bestimmt Stil, Instrumente, Struktur
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/Zusammenfassung

Text wird in Embeddings umgewandelt, die als Steuervektor dienen
CLIP verbindet Text & Bild
DINO liefert starke visuelle Features

Generative Modelle folgen dem Textvektor durch Cross-Attention, Conditioning und
Guidance

Text bestimmt Inhalt, Stil, Atmosphare und Struktur
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