
Montagsmaler mit KI 

Grenzen des Image captioning? 
 

In dieser Dokumentation wird die Frage “Grenzen des Image captioning?” behandelt.  

Anhand mehrerer Versionen eines interaktiven Projektes (“Montagsmaler mit KI”) wird 
untersucht, welche Einschränkungen bei den automatischen Bildbeschreibungen 
auftreten und wie sich unterschiedliche Modellansätze auf diese Grenzen auswirken.  

Das Konzept jeder Version ist gleich: 

Ein Benutzer malt auf einer Online-Leinwand ein vorgegebener Begriff und die KI errät, 
was gezeichnet wurde. 

Das Konzept ähnelt dem Spiel Montagsmaler. 

Insgesamt wurden vier verschiedene Projekte mit ähnlichen Herangehensweisen 
erstellt. 

Die Projekte wurden mir Python und einfacher Webentwicklung umgesetzt. 

MMAI – Erster Versuch 
https://github.com/AlyssaSmt/MMAI 

Die erste Version des Montagsmalers mit KI (MMAI) ist ein Zeichnspiel, bei dem ein 
Benutzer auf einer Leinwand malt und die KI erraten soll, was gezeichnet wurde. Es 
beinhaltet Echtzeit vorhersagen und erlaubt es den Nutzer die Zeichnungen lokal zu 
speichern. 

Die Funktionen beinhalten: 

• Malen auf einer Leinwand 
• Echtzeit KI vorhersagen 
• Konfidenz und Top 3 vorhersagen 
• Speichern und Galerie 

Benutzung 

Die Benutzung des Modells ist in der README-Datei beschrieben. 

Tools und Bibliotheken: 

https://github.com/AlyssaSmt/MMAI


• TensorFlow/Keras: Wird verwendet um ein Convolutional Neural Network (CNN) 
zu bauen und trainieren, das Zeichnungen erkennen kann. 

• FastAPI: Ein einfaches Python-Webframework, das die Backend-REST-API für die 
Modellvorhersagen bereitstellt. Es betreibt einen HTTP-Server (über Uvicorn) zur 
Bearbeitung der Anfragen. 

• Python (mit PIL, NumPy, etc.): Zur Bildbearbeitung und Datenbehandlung. 
• HTML//CSS/JavaScript: Zum Erstellen einer einfachen Weboberfläche. 

 

Modelarchitektur 

Das in MMAI verwendete KI-Modell ist ein einfaches CNN, das Skizzen in einen festen 
Satz von Kategorien einordnet. 
Für die erste Version des Projekts wurden zehn verschiedene Kategorien verwendet. 

Datensatz und Training: 

Der Datensatz stammt aus “Quick Draw!” von Google. Er beinhaltet eine Sammlung von 
über 50 Million Zeichnungen aus 345 Kategorien.  

Der Quick Draw! Datensatz stellt Zeichnungen als Sequenz von Stiftstrichen in 
NDJSON-Dateien bereit. 

Diese NDJSON Dateien werden des Python Programm “convert_ndjson_to_png.py” 
vorverarbeitet und in 64x64 Graustufenbilder umgewandelt. Das Programm liest für 
jede Zeichnung die Sequenz der Stiftstrichen aus und rendert diese zu einem Bild. Die 
Bilder werden anschließend auf den gezeichneten Bereich zugeschnitten und auf die 
Größe von 64x64 Pixeln skaliert. Das Programm ist begrenzt auf ein Maximum von 1500 
Bildern pro Kategorie. Die erzeugten Bilder werden für weitere Verwendung in einem 
separaten Ordner gespeichert. 

Das Trainieren des Modells erfolgt über das Python Skript “train_model.py”. Das Skript 
nimmt die zuvor konvertierten Bilder und teilt sie in Trainings- und Validierungsdaten 
(80/20-Aufteilung). Zusätzlich wird eine Normalisierung angewendet, um die Pixelwerte 
auf den Bereich [0,1] zu skalieren. Das Modell wird anschließend für 25 Epochen 
trainiert. Danach wird das besttrainierte Modell gespeichert. Das Ergebnis ist ein 
trainiertes CNN, welches Zeichnungen ihren jeweiligen Kategorien zuordnen kann. 

Backend 

Die Datei “main.py” lädt beim Start das trainierte CNN-Modell sowie die 
Klassenzuordnungen. Wenn eine Vorhersagenanfrage vom Frontend eingeht, wird die 
gleiche Vorverarbeitung durchgeführt wie im Training: 



Das Bild wird dekodiert, in ein Graustufenbild umgewandelt und normalisiert. 
Anschließend sagt das CNN die Klassenwahrscheinlichkeiten für das Bild voraus. 
Anhand der Vorhersagewerte identifiziert das Backend daraus die wahrscheinlichsten 
Klassen. 

 

Frontend 

Im frontend steuert die JavaScript Datei “script.js” die Benutzerinteraktion und sendet 
die Zeichnung regelmäßig zur Vorhersage an das Backend. Wenn der Benutzer auf der 
Zeichenfläche zeichnet, erfasst die Anwendung die Stiche Bewegungen. Alle paar 
hundert Millisekunden wird der Inhalt der Zeichenfläche erfasst und an den API-
Endpunkt gesendet.  

Das Vorhersagen Ergebnis wird anschließend genutzt, um das UI zu aktualisieren. 
Dabei werden die Top-Vorhersage mit Konfidenz sowie die Top-3-Vorhersagen 
angezeigt. 

Die Anwendung nutzt ein zufälliger Begriff der vorgegebenen Klassen zu Beginn jeder 
Runde. Wenn die Zeichnung mit der Modellvorhersage übereinstimmt, wird sie als 
korrekt erkannt. Anschließend kann der Benutzer das Bild speichern, welches rechts in 
einer Galerie angezeigt wird. 

Erkenntnisse 

Während der Erstellung des CNNs wurden einige Probleme erkannt. Zu Beginn hat die 
KI immer wieder das gleiche erraten. Dies lag daran, dass ursprünglich der Raw-
Datensatz von Quick Draw! genutzt wurde. Dieser Datensatz enthielt viele ungeeignete 
Zeichnungen, welche zum größtenteils nur weißen Bildern waren oder nur einzelne 
Striche hatten. Besonders oft wurde die Klasse “String Bean” erraten, welche im 
Schwarz-Weiß-Format nur aus Strichen besteht. Dadurch wurde das Modell so 
trainiert, dass ein weißes Bild mit Strichen immer ein “String Bean” war. 

Der erste Lösungsansatz war, die Klasse “String Bean” zu entfernen. Jedoch wurde 
danach häufig die Klasse “Sun” erraten, da diese ebenfalls nur aus einem Kreis mit 
Strichen besteht und vielen anderen Klassen ähnelt. 

Die Lösung des Problems war die Verwendung der " Simplified Drawing Files” von Quick 
Draw!. In diesem Datensatz werden Zeichnungen an die linke obere Ecke des Bildes 
ausgerichtet, einheitlich auf 256x256 Pixel skaliert, auf 1-Pixel-Abstand resampled und 
mit dem Ramer–Douglas–Peucker-Algorithmus vereinfacht. Durch die Verwendung des 
neuen Datensatzes konnte das Modell deutlich besser trainiert und genutzt werden. 

Es ist ebenfalls anzumerken, dass nicht alle Klassen für das Trainieren eines kleinen 
CNNs tatsächlich nützlich sind. Zum Beispiel Klassen wie “String Bean”, “Apple”, oder 



“Circle” sind sehr allgemein und bestehen aus einfachen Strichen oder Kreisen. Dies 
führt dazu, dass vieles falsch eingeordnet wird. 

 

 

 

MMAI2 - Einführung von CLIP zur Zero-Shot Recognition 
https://github.com/AlyssaSmt/MMAI2 

Die zweite Version des Montagmalers mit KI baut direkt auf der ersten Version auf. Das 
gleiche CNN-Modell wird weiterhin verwendet, jedoch wird zusätzlich ein zweites KI-
Modell verwendet. 

In dieser Version wurde das CLIP-Modell von OpenAI eingebunden, um Vorhersagen mit 
offenem Vokabular (Zero-Shot Recognition) zu ermöglichen. Das bedeutet, dass das 
System versucht, Skizzen außerhalb des begrenzten Klassensatzes zu erkennen, mit 
dem das CNN trainiert wurde.  

MMAI2 führt für jede Zeichnung zwei Modelle parallel aus: 

Zum einen das ursprüngliche CNN zur Klassifizierung innerhalb seiner trainierten 
Klassen, zum anderen ein vortrainiertes CLIP-Modell, welches die Zeichnungen mit 
beliebigen Textbeschreibungen vergleichen kann. Die Ergebnisse beider Modelle 
werden dem Benutzer angezeigt. 

Model Architektur und Daten 

Das CNN in MMAI2 ist im Wesentlichen dasselbe aus der ersten Version. Der einzige 
Unterschied besteht darin, dass es mit 29 Klassen statt nur 10 Klassen trainiert wurde. 

Ursprünglich wurde diese Version genutzt, um den Unterschied zwischen nur 10 
Klassen und 29 Klassen zu zeigen.  

Im Nachhinein wurde zusätzlich ein weiteres Modell integriert, um den Unterschied 
zwischen zwei verschiedenen Modellansätzen (supervised CNN vs. Zero-Shot-Modell) 
zu zeigen.  

Das CLIP-Modell ist vortrainiert, genauer gesagt verwendet es OpenAIs CLIP mit der 
ViT-B/32 Vision-Transformer-Architektur. 

CLIP ist ein neuronales Netzwerk, das auf rund 400 Millionen Bild-Text-Paaren trainiert 
wurde und dadurch die Ähnlichkeit zwischen einem Bild und einer Textbeschreibung 
messen kann. 



MMAI2 nutzt CLIP, um eine Bildbeschreibung für eine Zeichnung zu ermitteln, ohne 
dass das Modell explizit auf diese Zeichnungsklassen trainiert wurde. 

Da CLIP prinzipiell jede Textbeschreibung bewerten kann, wurde eine feste Liste an 
Bildunterschriften definiert, aus der CLIP frei wählen kann. Zusätzlich wurden 
Bildunterschriften hinzugefügt, die nicht im ursprünglichen CNN-Datensatzes 
verwendet worden sind. 

Dadurch ist es möglich, auch Objekte zu zeichnen, die nicht im CNN-Datensatz 
enthalten sind und dennoch korrekt vom CLIP-Modell erkannt werden (Bsp.: "a simple 
sketch of a person").  

API und Backend 

Die API stellt nun zwei Endpunkte bereit, zum einen das ursprüngliche CNN-Modell und 
zum anderen das neue CLIP-Modell. 

Das gezeichnete Bild wird an CLIP übergeben, und das Modell beantwortet im 
Wesentlichen die Frage: “Wie ähnlich ist diese Zeichnung den einzelnen 
Bildunterschriften in der Liste?”.  

CLIP berechnet einen Ähnlichkeitswert für jede Bildunterschrift, der mithilfe einer 
Softmax-Funktion in einen Konfidenzwert umgerechnet wird. Anschließend wird die 
Bildunterschrift mit der höchsten Übereinstimmung sowie die Top-3-Bildunterschriften 
mit ihren jeweiligen Konfidenzwerten ausgegeben. 

Das Backend lädt beim Start das CLIP-Modell und tokenisiert alle potenziellen 
Bildunterschriften vorab. Dadurch können Text- und Bild-Embeddings schnell 
berechnen werden, ohne Textbeschreibungen erneut zu tokenisieren. Bild und Text 
werden zur Vergleichbarkeit in denselben Embedding-Raum kodiert. Der Code ermittelt 
anschließend die Kosinusähnlichkeit zwischen dem Bild und jedem Text-Embedding 
und verwendet diese, um Überreinstimmungen zu bestimmen. 

Frontend 

Das Frontend ist ähnelt ebenfalls die erste Version des MMAI. Der Benutzer zeichnet 
auf einer Leinwand und die KI versucht zu erraten, was gezeichnet wurde. 

Das Ursprüngliche CNN gibt eine Vorhersage aus den zuvor definierten Klassen zurück. 
Darunter werden die Vorhersagen des CLIP-Modells mit den vordefinierten 
Bildunterschriften angezeigt. Beim Speichern einer Zeichnung werden sowohl die Top-
Übereinstimmung des CNNs als auch die Top-Übereinstimmung des CLIP-Modells 
angezeigt. 

Es wird weiterhin ein vordefinierter Begriff aus der Liste des CNNs vorgegeben. 
Zusätzlich kann der Benutzer jedoch auch Begriffe zeichnen, die nur für das CLIP-



Modell genutzt wurden. In diesem Fall wird nicht mehr bewertet, ob das gezeichnete 
mit dem vorgegebenen Begriff übereinstimmt bzw. “richtig” ist. 

Erkenntnisse 

Das Hinzufügen von weiteren Klassen des CNNs hat das Modell nicht stark verändert. 
Es wurde meistens das richtige vorhergesagt, jedoch musste oft mehr gezeichnet 
werden, um eine höhere Übereinstimmung zu bekommen. 

Die Erkennung des CLIP-Modells war ebenfalls oft erfolgreich, allerdings ist CLIP nicht 
speziell auf schwarz-weiß Zeichnungen trainiert. Daher musste in vielen Fällen 
detaillierter gezeichnet werden, damit das Modell das Objekt korrekt erkennen konnte. 

Im direkten Vergleich hat das selbst trainierte CNN-Modell schneller das gezeichnete 
erkannt als das CLIP-Modell. 

MMAI3 – Erweiterte Klassen Kategorien  
https://github.com/AlyssaSmt/MMAI3 

Die Dritte Version des Modells erweitert primär die Anzahl der CLIP-
Bildbeschreibungen. Es wurde getestet, wie gut CLIP mit einer deutlich größeren Anzahl 
an vorgegebenen Bildbeschreibungen umgehen kann. Insgesamt wurden etwa 140 
weiter Bildbeschreibungen hinzugefügt. Diese Bildbeschreibungen wurden in einer 
“captions.txt” Datei ergänzt. 

Die Anwendung MMAI3 ist eine minimale Erweiterung von MMAI2.  

Erkenntnisse: 

Während das CNN weiterhin stabile Ergebnisse liefert, zeigt CLIP bei größerem 
Vokabular mehr Unsicherheit und Genauigkeit. Außerdem weist das CLIP-Modell eine 
größere Verzögerung bei der Vorhersage auf als in MMAI2. 

 

MMAI4 – Open Vocabulary Erkennung mit OpenCLIP 
https://github.com/AlyssaSmt/MMAI4 

In der letzten Version des Projektes wurde ausschließlich mit CLIP gearbeitet.  

Das selbst trainierte CNN wurde vollständig entfernt, wodurch das Projekt zu einer Art 
Open-Vocabulary-KI weiterentwickelt wurde. Es benutzt ein vortrainierte CLIP-Modell, 
welches bereits in MMAI2 und MMAI3 verwendet wurde.  

Wesentliche Veränderungen 

https://github.com/AlyssaSmt/MMAI3
https://github.com/AlyssaSmt/MMAI4


Da ausschließlich mit CLIP gearbeitet wurde, muss das Modell nicht mehr trainiert 
werden. Stattdessen vergleicht das Modell die Skizzen mit einer größeren Liste an 
Wörtern. 

Damit es nur Wörter verwendet werden, welche zeichenbar sind, wurden die Kategorien 
des Quick Draw!-Datensatzes verwendet. Insgesamt stehen dem Modell 345 
verschiedene Wörter zur Auswahl. Dieser Datensatz kann jedoch mit einem anderen 
Datensatz von Wörtern ersetzt werden. 

Ebenfalls wurde das UI minimal angepasst. Die Live-Vorhersage kann nun ein- und 
ausgeschaltet werden. Dies ermöglicht es dem Nutzer ein Bild zu zeichnen, ohne von 
den Vorhersagen abgelenkt zu werden. Außerdem werden statt der Top-3-Ergebnissen 
jetzt die Top-5-Ergebnisse angezeigt. Dies ist zur Visualisierung der Genauigkeit des 
Modells gedacht. 

 

 

Erkenntnisse 

Da diese Version mit einer deutlich größeren Anzahl an Wörtern arbeitet, hat das Modell 
größere Schwierigkeiten, die korrekte Vorhersage zu treffen. 

Ursprünglich wurden 10.000 Wörter aus dem englischen Vokabular verwendet. Diese 
erwiesen sich jedoch als ungeeignet für das Modell, da diese Wörter zum größtenteils 
nicht Skizzierbar waren. Dies führte dazu, dass die Vorhersagen kaum aussagekräftig 
waren. 

Anschließend wurde eine KI-generierte Liste an Wörtern mit rund 700 skizzierbaren 
Wörtern verwendet. Mit dieser Liste an Wörtern war es möglich, ein aussagekräftiges 
Bild zu zeichnen und eine sinnvolle Vorhersage zu bekommen. Die Ergebnisse waren 
jedoch häufig ungenau, insbesondere wenn die Zeichnung sehr abstrakt war oder wenn 
sich Begriffe stark ähnelten (Bsp.: “Soccer Ball” und “Baseball”). 

Zuletzt wurde die Liste der Wörter des Quick Draw!-Datensatzes verwendet. Diese Liste 
enthält eine große Anzahl an skizzierbaren Wörtern und war somit besonders geeignet 
für die Anwendung. Da sie auf 345 Wörter begrenzt ist, waren die Vorhersagen des 
Modells deutlich stabiler und genauer. 

 

 

Gesamtergebnis 



Das Projekt untersucht die Grenzen des Image Captionings mithilfe eines 
Montagmaler-Spiels mit KI. Hierfür wurde Vier verschiedenen Versionen entwickelt und 
getestet.  

 

Beschränkung der Captions: 

In CNN-basieren Modellen kann eine Vorhersage nur innerhalb trainierter Klassen 
gemacht werden. Zeichnungen außerhalb der vordefinierten Bildunterschriften erhalten 
jedoch trotzdem eine Caption, die meistens nicht korrekt ist. Dies verdeutlicht die 
“Closed-World”-Annahme klassischer, supervised Captioning-Systeme. 

 

Visuelle Abstraktheit: 

Oft sind Zeichnungen sehr abstrakt und können mehrdeutig sein. Alle Versionen der 
Anwendung zeigen oft Unsicherheit bei visuell ähnlichen Klassen (Bsp.: “Ball” und 
“Apple”). 

Dies zwingt die Modelle eine Vorhersage zu treffen, obwohl diese mit hoher 
Wahrscheinlichkeit nicht korrekt ist. 

Empfindlichkeit bei der Vorverarbeitung: 

Das Ergebnis der Vorhersage der CNN-Modelle hängen stark von der Vorverarbeitung 
und des Datensatzes ab. Durch die Verwendung eines ungenauen Datensatzes kann 
das Modell nicht richtig trainiert werden und die Vorhersagen sind ungenau. 

 

“Open Vocabulary” beseitigt Unsicherheiten nicht: 

MMAI4 reduziert zwar die Klassenbeschränkungen, jedoch bleibt das gewählte 
Vokabular eingeschränkt. Je mehr Klassen verwendet werden, desto geringer ist die 
Genauigkeit der Vorhersage. 

 

Fazit: 

Das Projekt zeigt, dass Image Captioning nicht nur durch die Modellwahl, sondern auch 
durch den Datensatz, die Vorverarbeitung und auch das genutzte Vokabular abhängig 
ist. Verschiedene Modelle erhöhen zwar die Flexibilität, jedoch bleiben alle Modelle zu 
einem gewissen Grad beschränkt. 
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