
Montagsmaler mit KI

Grenzen des Image captioning?

In dieser Dokumentation wird die Frage “Grenzen des Image captioning?” behandelt.

Anhand mehrerer Versionen eines interaktiven Projektes (“Montagsmaler mit KI”) wird
untersucht, welche Einschränkungen bei den automatischen Bildbeschreibungen
auftreten und wie sich unterschiedliche Modellansätze auf diese Grenzen auswirken.

Das Konzept jeder Version ist gleich:

Ein Benutzer malt auf einer Online-Leinwand ein vorgegebener Begriff und die KI errät,
was gezeichnet wurde.

Das Konzept ähnelt dem Spiel Montagsmaler.

Insgesamt wurden vier verschiedene Projekte mit ähnlichen Herangehensweisen
erstellt.

Die Projekte wurden mir Python und einfacher Webentwicklung umgesetzt.

MMAI – Erster Versuch
https://github.com/AlyssaSmt/MMAI

Die erste Version des Montagsmalers mit KI (MMAI) ist ein Zeichnspiel, bei dem ein
Benutzer auf einer Leinwand malt und die KI erraten soll, was gezeichnet wurde. Es
beinhaltet Echtzeit vorhersagen und erlaubt es den Nutzer die Zeichnungen lokal zu
speichern.

Die Funktionen beinhalten:

• Malen auf einer Leinwand
• Echtzeit KI vorhersagen
• Konfidenz und Top 3 vorhersagen
• Speichern und Galerie

Benutzung

Die Benutzung des Modells ist in der README-Datei beschrieben.

Tools und Bibliotheken:

https://github.com/AlyssaSmt/MMAI

• TensorFlow/Keras: Wird verwendet um ein Convolutional Neural Network (CNN)
zu bauen und trainieren, das Zeichnungen erkennen kann.

• FastAPI: Ein einfaches Python-Webframework, das die Backend-REST-API für die
Modellvorhersagen bereitstellt. Es betreibt einen HTTP-Server (über Uvicorn) zur
Bearbeitung der Anfragen.

• Python (mit PIL, NumPy, etc.): Zur Bildbearbeitung und Datenbehandlung.
• HTML//CSS/JavaScript: Zum Erstellen einer einfachen Weboberfläche.

Modelarchitektur

Das in MMAI verwendete KI-Modell ist ein einfaches CNN, das Skizzen in einen festen
Satz von Kategorien einordnet.
Für die erste Version des Projekts wurden zehn verschiedene Kategorien verwendet.

Datensatz und Training:

Der Datensatz stammt aus “Quick Draw!” von Google. Er beinhaltet eine Sammlung von
über 50 Million Zeichnungen aus 345 Kategorien.

Der Quick Draw! Datensatz stellt Zeichnungen als Sequenz von Stiftstrichen in
NDJSON-Dateien bereit.

Diese NDJSON Dateien werden des Python Programm “convert_ndjson_to_png.py”
vorverarbeitet und in 64x64 Graustufenbilder umgewandelt. Das Programm liest für
jede Zeichnung die Sequenz der Stiftstrichen aus und rendert diese zu einem Bild. Die
Bilder werden anschließend auf den gezeichneten Bereich zugeschnitten und auf die
Größe von 64x64 Pixeln skaliert. Das Programm ist begrenzt auf ein Maximum von 1500
Bildern pro Kategorie. Die erzeugten Bilder werden für weitere Verwendung in einem
separaten Ordner gespeichert.

Das Trainieren des Modells erfolgt über das Python Skript “train_model.py”. Das Skript
nimmt die zuvor konvertierten Bilder und teilt sie in Trainings- und Validierungsdaten
(80/20-Aufteilung). Zusätzlich wird eine Normalisierung angewendet, um die Pixelwerte
auf den Bereich [0,1] zu skalieren. Das Modell wird anschließend für 25 Epochen
trainiert. Danach wird das besttrainierte Modell gespeichert. Das Ergebnis ist ein
trainiertes CNN, welches Zeichnungen ihren jeweiligen Kategorien zuordnen kann.

Backend

Die Datei “main.py” lädt beim Start das trainierte CNN-Modell sowie die
Klassenzuordnungen. Wenn eine Vorhersagenanfrage vom Frontend eingeht, wird die
gleiche Vorverarbeitung durchgeführt wie im Training:

Das Bild wird dekodiert, in ein Graustufenbild umgewandelt und normalisiert.
Anschließend sagt das CNN die Klassenwahrscheinlichkeiten für das Bild voraus.
Anhand der Vorhersagewerte identifiziert das Backend daraus die wahrscheinlichsten
Klassen.

Frontend

Im frontend steuert die JavaScript Datei “script.js” die Benutzerinteraktion und sendet
die Zeichnung regelmäßig zur Vorhersage an das Backend. Wenn der Benutzer auf der
Zeichenfläche zeichnet, erfasst die Anwendung die Stiche Bewegungen. Alle paar
hundert Millisekunden wird der Inhalt der Zeichenfläche erfasst und an den API-
Endpunkt gesendet.

Das Vorhersagen Ergebnis wird anschließend genutzt, um das UI zu aktualisieren.
Dabei werden die Top-Vorhersage mit Konfidenz sowie die Top-3-Vorhersagen
angezeigt.

Die Anwendung nutzt ein zufälliger Begriff der vorgegebenen Klassen zu Beginn jeder
Runde. Wenn die Zeichnung mit der Modellvorhersage übereinstimmt, wird sie als
korrekt erkannt. Anschließend kann der Benutzer das Bild speichern, welches rechts in
einer Galerie angezeigt wird.

Erkenntnisse

Während der Erstellung des CNNs wurden einige Probleme erkannt. Zu Beginn hat die
KI immer wieder das gleiche erraten. Dies lag daran, dass ursprünglich der Raw-
Datensatz von Quick Draw! genutzt wurde. Dieser Datensatz enthielt viele ungeeignete
Zeichnungen, welche zum größtenteils nur weißen Bildern waren oder nur einzelne
Striche hatten. Besonders oft wurde die Klasse “String Bean” erraten, welche im
Schwarz-Weiß-Format nur aus Strichen besteht. Dadurch wurde das Modell so
trainiert, dass ein weißes Bild mit Strichen immer ein “String Bean” war.

Der erste Lösungsansatz war, die Klasse “String Bean” zu entfernen. Jedoch wurde
danach häufig die Klasse “Sun” erraten, da diese ebenfalls nur aus einem Kreis mit
Strichen besteht und vielen anderen Klassen ähnelt.

Die Lösung des Problems war die Verwendung der " Simplified Drawing Files” von Quick
Draw!. In diesem Datensatz werden Zeichnungen an die linke obere Ecke des Bildes
ausgerichtet, einheitlich auf 256x256 Pixel skaliert, auf 1-Pixel-Abstand resampled und
mit dem Ramer–Douglas–Peucker-Algorithmus vereinfacht. Durch die Verwendung des
neuen Datensatzes konnte das Modell deutlich besser trainiert und genutzt werden.

Es ist ebenfalls anzumerken, dass nicht alle Klassen für das Trainieren eines kleinen
CNNs tatsächlich nützlich sind. Zum Beispiel Klassen wie “String Bean”, “Apple”, oder

“Circle” sind sehr allgemein und bestehen aus einfachen Strichen oder Kreisen. Dies
führt dazu, dass vieles falsch eingeordnet wird.

MMAI2 - Einführung von CLIP zur Zero-Shot Recognition
https://github.com/AlyssaSmt/MMAI2

Die zweite Version des Montagmalers mit KI baut direkt auf der ersten Version auf. Das
gleiche CNN-Modell wird weiterhin verwendet, jedoch wird zusätzlich ein zweites KI-
Modell verwendet.

In dieser Version wurde das CLIP-Modell von OpenAI eingebunden, um Vorhersagen mit
offenem Vokabular (Zero-Shot Recognition) zu ermöglichen. Das bedeutet, dass das
System versucht, Skizzen außerhalb des begrenzten Klassensatzes zu erkennen, mit
dem das CNN trainiert wurde.

MMAI2 führt für jede Zeichnung zwei Modelle parallel aus:

Zum einen das ursprüngliche CNN zur Klassifizierung innerhalb seiner trainierten
Klassen, zum anderen ein vortrainiertes CLIP-Modell, welches die Zeichnungen mit
beliebigen Textbeschreibungen vergleichen kann. Die Ergebnisse beider Modelle
werden dem Benutzer angezeigt.

Model Architektur und Daten

Das CNN in MMAI2 ist im Wesentlichen dasselbe aus der ersten Version. Der einzige
Unterschied besteht darin, dass es mit 29 Klassen statt nur 10 Klassen trainiert wurde.

Ursprünglich wurde diese Version genutzt, um den Unterschied zwischen nur 10
Klassen und 29 Klassen zu zeigen.

Im Nachhinein wurde zusätzlich ein weiteres Modell integriert, um den Unterschied
zwischen zwei verschiedenen Modellansätzen (supervised CNN vs. Zero-Shot-Modell)
zu zeigen.

Das CLIP-Modell ist vortrainiert, genauer gesagt verwendet es OpenAIs CLIP mit der
ViT-B/32 Vision-Transformer-Architektur.

CLIP ist ein neuronales Netzwerk, das auf rund 400 Millionen Bild-Text-Paaren trainiert
wurde und dadurch die Ähnlichkeit zwischen einem Bild und einer Textbeschreibung
messen kann.

MMAI2 nutzt CLIP, um eine Bildbeschreibung für eine Zeichnung zu ermitteln, ohne
dass das Modell explizit auf diese Zeichnungsklassen trainiert wurde.

Da CLIP prinzipiell jede Textbeschreibung bewerten kann, wurde eine feste Liste an
Bildunterschriften definiert, aus der CLIP frei wählen kann. Zusätzlich wurden
Bildunterschriften hinzugefügt, die nicht im ursprünglichen CNN-Datensatzes
verwendet worden sind.

Dadurch ist es möglich, auch Objekte zu zeichnen, die nicht im CNN-Datensatz
enthalten sind und dennoch korrekt vom CLIP-Modell erkannt werden (Bsp.: "a simple
sketch of a person").

API und Backend

Die API stellt nun zwei Endpunkte bereit, zum einen das ursprüngliche CNN-Modell und
zum anderen das neue CLIP-Modell.

Das gezeichnete Bild wird an CLIP übergeben, und das Modell beantwortet im
Wesentlichen die Frage: “Wie ähnlich ist diese Zeichnung den einzelnen
Bildunterschriften in der Liste?”.

CLIP berechnet einen Ähnlichkeitswert für jede Bildunterschrift, der mithilfe einer
Softmax-Funktion in einen Konfidenzwert umgerechnet wird. Anschließend wird die
Bildunterschrift mit der höchsten Übereinstimmung sowie die Top-3-Bildunterschriften
mit ihren jeweiligen Konfidenzwerten ausgegeben.

Das Backend lädt beim Start das CLIP-Modell und tokenisiert alle potenziellen
Bildunterschriften vorab. Dadurch können Text- und Bild-Embeddings schnell
berechnen werden, ohne Textbeschreibungen erneut zu tokenisieren. Bild und Text
werden zur Vergleichbarkeit in denselben Embedding-Raum kodiert. Der Code ermittelt
anschließend die Kosinusähnlichkeit zwischen dem Bild und jedem Text-Embedding
und verwendet diese, um Überreinstimmungen zu bestimmen.

Frontend

Das Frontend ist ähnelt ebenfalls die erste Version des MMAI. Der Benutzer zeichnet
auf einer Leinwand und die KI versucht zu erraten, was gezeichnet wurde.

Das Ursprüngliche CNN gibt eine Vorhersage aus den zuvor definierten Klassen zurück.
Darunter werden die Vorhersagen des CLIP-Modells mit den vordefinierten
Bildunterschriften angezeigt. Beim Speichern einer Zeichnung werden sowohl die Top-
Übereinstimmung des CNNs als auch die Top-Übereinstimmung des CLIP-Modells
angezeigt.

Es wird weiterhin ein vordefinierter Begriff aus der Liste des CNNs vorgegeben.
Zusätzlich kann der Benutzer jedoch auch Begriffe zeichnen, die nur für das CLIP-

Modell genutzt wurden. In diesem Fall wird nicht mehr bewertet, ob das gezeichnete
mit dem vorgegebenen Begriff übereinstimmt bzw. “richtig” ist.

Erkenntnisse

Das Hinzufügen von weiteren Klassen des CNNs hat das Modell nicht stark verändert.
Es wurde meistens das richtige vorhergesagt, jedoch musste oft mehr gezeichnet
werden, um eine höhere Übereinstimmung zu bekommen.

Die Erkennung des CLIP-Modells war ebenfalls oft erfolgreich, allerdings ist CLIP nicht
speziell auf schwarz-weiß Zeichnungen trainiert. Daher musste in vielen Fällen
detaillierter gezeichnet werden, damit das Modell das Objekt korrekt erkennen konnte.

Im direkten Vergleich hat das selbst trainierte CNN-Modell schneller das gezeichnete
erkannt als das CLIP-Modell.

MMAI3 – Erweiterte Klassen Kategorien
https://github.com/AlyssaSmt/MMAI3

Die Dritte Version des Modells erweitert primär die Anzahl der CLIP-
Bildbeschreibungen. Es wurde getestet, wie gut CLIP mit einer deutlich größeren Anzahl
an vorgegebenen Bildbeschreibungen umgehen kann. Insgesamt wurden etwa 140
weiter Bildbeschreibungen hinzugefügt. Diese Bildbeschreibungen wurden in einer
“captions.txt” Datei ergänzt.

Die Anwendung MMAI3 ist eine minimale Erweiterung von MMAI2.

Erkenntnisse:

Während das CNN weiterhin stabile Ergebnisse liefert, zeigt CLIP bei größerem
Vokabular mehr Unsicherheit und Genauigkeit. Außerdem weist das CLIP-Modell eine
größere Verzögerung bei der Vorhersage auf als in MMAI2.

MMAI4 – Open Vocabulary Erkennung mit OpenCLIP
https://github.com/AlyssaSmt/MMAI4

In der letzten Version des Projektes wurde ausschließlich mit CLIP gearbeitet.

Das selbst trainierte CNN wurde vollständig entfernt, wodurch das Projekt zu einer Art
Open-Vocabulary-KI weiterentwickelt wurde. Es benutzt ein vortrainierte CLIP-Modell,
welches bereits in MMAI2 und MMAI3 verwendet wurde.

Wesentliche Veränderungen

https://github.com/AlyssaSmt/MMAI3
https://github.com/AlyssaSmt/MMAI4

Da ausschließlich mit CLIP gearbeitet wurde, muss das Modell nicht mehr trainiert
werden. Stattdessen vergleicht das Modell die Skizzen mit einer größeren Liste an
Wörtern.

Damit es nur Wörter verwendet werden, welche zeichenbar sind, wurden die Kategorien
des Quick Draw!-Datensatzes verwendet. Insgesamt stehen dem Modell 345
verschiedene Wörter zur Auswahl. Dieser Datensatz kann jedoch mit einem anderen
Datensatz von Wörtern ersetzt werden.

Ebenfalls wurde das UI minimal angepasst. Die Live-Vorhersage kann nun ein- und
ausgeschaltet werden. Dies ermöglicht es dem Nutzer ein Bild zu zeichnen, ohne von
den Vorhersagen abgelenkt zu werden. Außerdem werden statt der Top-3-Ergebnissen
jetzt die Top-5-Ergebnisse angezeigt. Dies ist zur Visualisierung der Genauigkeit des
Modells gedacht.

Erkenntnisse

Da diese Version mit einer deutlich größeren Anzahl an Wörtern arbeitet, hat das Modell
größere Schwierigkeiten, die korrekte Vorhersage zu treffen.

Ursprünglich wurden 10.000 Wörter aus dem englischen Vokabular verwendet. Diese
erwiesen sich jedoch als ungeeignet für das Modell, da diese Wörter zum größtenteils
nicht Skizzierbar waren. Dies führte dazu, dass die Vorhersagen kaum aussagekräftig
waren.

Anschließend wurde eine KI-generierte Liste an Wörtern mit rund 700 skizzierbaren
Wörtern verwendet. Mit dieser Liste an Wörtern war es möglich, ein aussagekräftiges
Bild zu zeichnen und eine sinnvolle Vorhersage zu bekommen. Die Ergebnisse waren
jedoch häufig ungenau, insbesondere wenn die Zeichnung sehr abstrakt war oder wenn
sich Begriffe stark ähnelten (Bsp.: “Soccer Ball” und “Baseball”).

Zuletzt wurde die Liste der Wörter des Quick Draw!-Datensatzes verwendet. Diese Liste
enthält eine große Anzahl an skizzierbaren Wörtern und war somit besonders geeignet
für die Anwendung. Da sie auf 345 Wörter begrenzt ist, waren die Vorhersagen des
Modells deutlich stabiler und genauer.

Gesamtergebnis

Das Projekt untersucht die Grenzen des Image Captionings mithilfe eines
Montagmaler-Spiels mit KI. Hierfür wurde Vier verschiedenen Versionen entwickelt und
getestet.

Beschränkung der Captions:

In CNN-basieren Modellen kann eine Vorhersage nur innerhalb trainierter Klassen
gemacht werden. Zeichnungen außerhalb der vordefinierten Bildunterschriften erhalten
jedoch trotzdem eine Caption, die meistens nicht korrekt ist. Dies verdeutlicht die
“Closed-World”-Annahme klassischer, supervised Captioning-Systeme.

Visuelle Abstraktheit:

Oft sind Zeichnungen sehr abstrakt und können mehrdeutig sein. Alle Versionen der
Anwendung zeigen oft Unsicherheit bei visuell ähnlichen Klassen (Bsp.: “Ball” und
“Apple”).

Dies zwingt die Modelle eine Vorhersage zu treffen, obwohl diese mit hoher
Wahrscheinlichkeit nicht korrekt ist.

Empfindlichkeit bei der Vorverarbeitung:

Das Ergebnis der Vorhersage der CNN-Modelle hängen stark von der Vorverarbeitung
und des Datensatzes ab. Durch die Verwendung eines ungenauen Datensatzes kann
das Modell nicht richtig trainiert werden und die Vorhersagen sind ungenau.

“Open Vocabulary” beseitigt Unsicherheiten nicht:

MMAI4 reduziert zwar die Klassenbeschränkungen, jedoch bleibt das gewählte
Vokabular eingeschränkt. Je mehr Klassen verwendet werden, desto geringer ist die
Genauigkeit der Vorhersage.

Fazit:

Das Projekt zeigt, dass Image Captioning nicht nur durch die Modellwahl, sondern auch
durch den Datensatz, die Vorverarbeitung und auch das genutzte Vokabular abhängig
ist. Verschiedene Modelle erhöhen zwar die Flexibilität, jedoch bleiben alle Modelle zu
einem gewissen Grad beschränkt.

Quellen

https://github.com/AlyssaSmt/MMAI

https://github.com/AlyssaSmt/MMAI2

https://github.com/AlyssaSmt/MMAI3

https://github.com/AlyssaSmt/MMAI4

https://quickdraw.withgoogle.com/

https://github.com/googlecreativelab/quickdraw-dataset

https://github.com/first20hours/google-10000-english/blob/master/google-10000-
english-no-swears.txt

https://github.com/openai/CLIP

https://github.com/AlyssaSmt/MMAI
https://github.com/AlyssaSmt/MMAI2
https://github.com/AlyssaSmt/MMAI3
https://github.com/AlyssaSmt/MMAI4
https://quickdraw.withgoogle.com/
https://github.com/googlecreativelab/quickdraw-dataset
https://github.com/first20hours/google-10000-english/blob/master/google-10000-english-no-swears.txt
https://github.com/first20hours/google-10000-english/blob/master/google-10000-english-no-swears.txt
https://github.com/openai/CLIP

	Grenzen des Image captioning?
	MMAI – Erster Versuch
	MMAI2 - Einführung von CLIP zur Zero-Shot Recognition
	MMAI3 – Erweiterte Klassen Kategorien
	MMAI4 – Open Vocabulary Erkennung mit OpenCLIP

