VALL-E-X Voice Cloning
Uberblick

In diesem Projekt habe ich die Open-Source-Implementierung VALL-E-X genutzt, um
Voice Cloning mit eigenen Sprachsamples zu testen.

Die Basis bildet das GitHub-Repository von Plachtaa, welches Microsofts VALL-E-X
Zero-Shot-TTS-Modell nachbildet.

https://github.com/Plachtaa/VALL-E-X

https://www.microsoft.com/en-us/research/project/vall-e-x

Ziel war es eigene Stimmen-Samples zu nutzen um meine Stimme zu klonen und mit
verschiedenen Ansatzen herauszufinden, wo die Grenzen des Modells liegen und um
stabilere Ergebnisse zu erhalten

Umsetzung

Ich habe das bestehende VALL-E-X-Projekt lokal eingerichtet und nicht das Modell
selbst verandert, sondern nur zuséatzliche erganzt, angepasste Bereiche sind:

e Eigene Sprachsamples

e Textprompts

e Kombinieren von Samples zu einem Voice-Embedding
e Erzwingenvon einem CPU-kompatiblen Modus

e Ladenvon bendtigten Modellen

e Kleinere Code-Anpassungen

Kombinierte Embeddings
Fur die Arbeit mit mehreren Samples habe ich eine Hilfsfunktion erstellt, die:
e auseinem neuen .wav-Sample temporar ein Prompt-Embedding erzeugt
e Audio-Tokens und Text-Tokens extrahiert
e diese Tokens an ein bestehendes Embedding anhangt
e das kombinierte Embedding wieder speichert

e jedes neue Sample erweitert vorhandene Embedding

https://github.com/Plachtaa/VALL-E-X
https://www.microsoft.com/en-us/research/project/vall-e-x

Sprachsamples

Samples 1-4: unterschiedliche gesprochene Inhalte, nicht direkt auf den
Textprompt abgestimmt

Sample 5: Kein Sprechtext, nur “Gerausche” verschlechterten Ergebnisse
Sample 6: Deutsch —fur diese Tests unbrauchbar

Samples 07-09: enthalten explizit Worter aus ,,The quick brown fox jumps over
the lazy dog.”“ auf verschiedene Weisen

Text-Prompts

Test:
»oample ‘x’. Hello this is my cloned voice speaking! Do | sound at all close to the
real thing? The quick brown fox jumps over the lazy dog.”
Humanized:
Zusatze wie: ,,uh”, ,um® ,ha ha ha“ sigh, breathes, laughs
Fox:
»The quick brown fox jumps over the lazy dog.“
Hello World:
»1 his is my cloned voice, hello world!“
Other:
»ohe sells seashells by the seashore.”
»Ha ha ha, um. Uhhh, hahah.”
Ergebnisse

Struktur der Ordner

Single Samples
Audio aus einem einzelnen Sprachsample

o Ordner fur Test, Humaized und Fox Prompt Ergebnisse

Embedding
Audio aus kombinierten Embeddings (mehrere Samples)

o Ordner fur Fox, Hello World and Other Prompt Ergebnisse

Single-Sample-Ergebnisse
Test:

sample1_cloned.wav/ sample2_cloned.wav/sample3_cloned.wav /
sampled_cloned.wav (LAUT) / sample5_cloned.wav

Fox:

sample1.humanized_cloned.wav/sample1.2_cloned.wav/
sample2.2_cloned.wav/ sample3.2_cloned.wav/sample4.2_cloned.wav/
sample5.2_cloned.wav

Embedding-Ergebnisse (kombinierte Samples)
Fox:

sample07_e.wav (STUMM) / sample07_08_e.wav/ sample07-09_e.wav (STUMM)
/ sample07-09_1_e.wav/sample07-09_1_2_e.wav/sample07-09_1-3_e.wav/
sample07-09_1-4_e.wav/sample07-09_1-5_e.wav/sample07-09_1-5_07_e.wav
(STUMM) / sample07-09_1-5_07_08_e.wav/ sample07-09_1-5_07-09_e.wav

Hello World:

all_samples+07.wav / all_samples+07,08.wav/ all_samples+07-09.wav /
all_samples+07-09+1.wav/all_samples+07-09+1,2.wav/ all_samples+07-09+1-
3.wav/ all_samples+07-09+1-4.wav (SEHR LAUT) / all_samples+07-09+1-5.wav

Other:

all_samples_humanized.wav / all_samples_tonguetwister.wav

Mit zunehmender Anzahl kombinierter Samples wurden Stimme und Intonation
konsistenter, jedoch hat erneutes Nutzen von Samples die Ergebnisse stark beeinflusst,
somit sind einzelne Ergebnisse im Sprechen der Prompts gescheitert.

Fazit

Das Projekt zeigt, wie eine lokale Methode zum Klonen von Stimmen mit Kl umgesetzt
werden kann. Dabei wurde deutlich, dass der locale Ansatz im Vergleich zu externen
Voice-Cloning-Diensten deutlich schwéacher ist und gleichzeitig mehr Aufwand
erfordert. Positivist jedoch, dass sich dadurch zeigt, dass Voice Cloning bei lokaler
Umsetzung nicht einfach Auszunutzen ist und schon ein gewisses technisches
Verstandnis voraussetzt.

AuBerdem wurde der Unterschied zwischen Voice Cloning mit einzelnen Samples und
mit kombinierten Embeddings sichtbar. Einzelne Samples liefern stark vom Input
abhangige Ergebnisse, wahrend kombinierte Embeddings ein bisschen stabiler waren.
Trotzdem ist auch diese Methode nicht perfekt und bendtigt mehrere gute
Sprachsamples, um wirklich brauchbare Resultate zu liefern.

Einen groBen Einfluss hatte die Qualitat der Samples. Sprache, Inhalt und
Aufnahmequalitat haben sehr stark auf das Ergebnis eingewirkt. Samples, die nicht zum
gewlnschten Text passen oder in einer anderen Sprache aufgenommen wurden,
fuhrten zu schlechteren oder sogar unbrauchbaren Resultaten. Daraus lasst sich
schlieBen, dass man die Grenzen des Modells kennen muss, um es sinnvoll zu nutzen.

Zusatzlich habe ich gelernt, mit der Anwendung umzugehen, wobei ein groBer Teil der
Arbeitin das Einrichten des Projekts und in das Aufnehmen der Samples geflossen ist.
Die Audiogenerierung selbst nahm ebenfalls viel Zeit in Anspruch. Insgesamt hat das
Projekt gezeigt, dass gute Ergebnisse nur mit passenden Samples, Geduld und einem
ausreichendem Verstandnis der Modellgrenzen mdglich sind.

Leider hatte ich ein Paar Probleme ein GitHub Repository zu erstellen, sowohl mit
groBen Dateien, als auch ohne. Deshalb hier einmal die Code Teile an denenich
gearbietet, oder etwas verandert habe.

testclone.py

importos

from scipy.io.wavfile import write as write_wav

from utils.generation import SAMPLE_RATE, generate_audio, preload_models
from utils.voice_enrollimport update_combined_embedding

CPU-safe
os.environ["CUDA_VISIBLE_DEVICES"] =""
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] ="1"

Paths

BASE_DIR=o0s.path.dirname(os.path.abspath(__file__))

combined_voice_name ="sample0"

voice_file = os.path.join(BASE_DIR, "data/voices/wavs/sample08.wav") ###
output_dir=o0s.path.join(BASE_DIR, "results")

output_file =os.path.join(output_dir, f"{combined_voice_name}.19_cloned.wav")

text prompt
text_to_speak="hahaha,um.uhhh, hahah."

Add to combined embedding
update_combined_embedding(combined_voice_name, voice_file)

Generate audio using allenrolled samples
preload_models()

audio_array =generate_audio(text_to_speak, prompt=combined_voice_name)

Save

os.makedirs(output_dir, exist_ok=True)
write_wav(output_file, SAMPLE_RATE, audio_array)

print(f" 4 Cloned voice saved to {output_file}")

voice_enroll.py

importos

importnumpyas np

from utils.prompt_making import make_prompt

def update_combined_embedding(voice_name, new_wav_path, combined_dir="/customs", transcript=None):
os.makedirs(combined_dir, exist_ok=True)

Create temp embedding
make_prompt(
name=voice_name,
audio_prompt_path=new_wav_path,
transcript=transcript

)
temp_npz=o0s.path.join(combined_dir, f"{voice_name}.npz")

with np.load(temp_npz, allow_pickle=True) as data:
new_audio_tokens =data["audio_tokens"]
new_text_tokens =data["text_tokens"]
lang_code=data["lang_code"]

closefile before deleting
os.remove(temp_npz)

combined_path =o0s.path.join(combined_dir, f"{voice_name}.npz")

if os.path.exists(combined_path):
with np.load(combined_path, allow_pickle=True) as existing:
audio_tokens =np.concatenate(
[existing["audio_tokens"], new_audio_tokens], axis=0
)
text_tokens =np.concatenate(
[existing["text_tokens"], new_text_tokens], axis=0
)
keep originallanguage
lang_code =existing["lang_code"]
else:
audio_tokens =new_audio_tokens
text_tokens =new_text_tokens

np.savez(
combined_path,
audio_tokens=audio_tokens,
text_tokens=text_tokens,
lang_code=lang_code

print(f" £4 Updated combined embedding:{combined_path}")

prompt_making.py

importos

importtorch

import torchaudio

import logging

import langid

importwhisper
langid.set_languages(['en), 'zh' 'ja'])

import numpyas np
from data.tokenizerimport (
AudioTokenizer,
tokenize_audio,
)
from data.collation import get_text_token_collater
from utils.g2p import PhonemeBpeTokenizer

from macros import *

text_tokenizer =PhonemeBpeTokenizer(tokenizer_path="/utils/g2p/bpe_69.json")
text_collater =get_text_token_collater()

device = torch.device("cpu")

if torch.cuda.is_available():
device =torch.device("cuda", 0)

if torch.backends.mps.is_available():
device =torch.device("mps")

codec =AudioTokenizer(device)

if not os.path.exists("/whisper/"): os.mkdir("./whisper/")
whisper_model=None

@torch.no_grad()

def transcribe_one(model, audio_path):
load audio and pad/trim it to fit 30 seconds
audio =whisper.load_audio(audio_path)
audio =whisper.pad_or_trim(audio)

make log-Mel spectrogram and move to the same device as the model
mel = whisper.log_mel_spectrogram(audio).to(model.device)

detectthe spoken language

_, probs =model.detect_language(mel)

print(f"Detected language: {max(probs, key=probs.get)}")

lang = max(probs, key=probs.get)

decodetheaudio

options =whisper.DecodingOptions(temperature=1.0, best_of=5, fp16=False if device ==torch.device("cpu") else True, sample_len=150)
result =whisper.decode(model, mel, options)

printtherecognized text
print(result.text)

text_pr=result.text

if text_pr.strip("")[-1] notin"?l.,, , ? ', o ™
text_pr+=""

return lang, text_pr

def make_prompt(name, audio_prompt_path, transcript=None):
globalmodel, text_collater, text_tokenizer, codec
wav_pr, sr=torchaudio.load(audio_prompt_path)
check length
if wav_pr.size(-1) /sr>15:
raise ValueError(f"Prompt too long, expect length below 15 seconds, got{wav_pr/sr} seconds.")
if wav_pr.size(0) ==2:
wav_pr=wav_pr.mean(0, keepdim=True)
text_pr, lang_pr=make_transcript(name, wav_pr, sr, transcript)

tokenize audio
encoded_frames =tokenize_audio(codec, (wav_pr, sr))
audio_tokens =encoded_frames[0][0].transpose(2, 1).cpu().numpy()

tokenize text
phonemes, langs =text_tokenizer.tokenize(text=f"{text_pr}".strip())
text_tokens, enroll_x_lens =text_collater(

[

phonemes

message =f"Detected language: {lang_pr}\n Detected text {text_pr}\n"

save as npzfile

save_path =os.path.join("/customs/", f"{name}.npz")

np.savez(save_path, audio_tokens=audio_tokens, text_tokens=text_tokens, lang_code=lang2code[lang_pr])
logging.info(f"Successful. Prompt saved to {save_path}")

def make_transcript(name, wav, sr, transcript=None):

if notisinstance(wav, torch.FloatTensor):
wav = torch.tensor(wav)

if wav.abs().max() > 1:
wav /= wav.abs().max()

if wav.size(-1) ==2:
wav = wav.mean(-1, keepdim=False)

if wav.ndim==1:
wav = wav.unsqueeze(0)

assertwav.ndim and wav.size(0) ==1

if transcriptis None ortranscript==""
logging.info("Transcript not given, using Whisper...")
globalwhisper_model
if whisper_modelis None:

whisper_model=whisper.load_model("medium",download_root=os.path.join(os.getcwd(), "whisper"))

whisper_model.to(device)
torchaudio.save(f"./prompts/{name}.wav", wav, sr)
lang, text = transcribe_one(whisper_model, f"./prompts/{name}.wav")
lang_token =lang2token[lang]
text = lang_token +text + lang_token
os.remove(f"/prompts/{name}.wav")
whisper_model.cpu()

else:
text = transcript
lang, _ =langid.classify(text)
lang_token =lang2token[lang]
text = lang_token +text +lang_token

torch.cuda.empty_cache()
return text, lang

