
VALL-E-X Voice Cloning

Überblick

In diesem Projekt habe ich die Open-Source-Implementierung VALL-E-X genutzt, um
Voice Cloning mit eigenen Sprachsamples zu testen.
Die Basis bildet das GitHub-Repository von Plachtaa, welches Microsofts VALL-E-X
Zero-Shot-TTS-Modell nachbildet.

https://github.com/Plachtaa/VALL-E-X

https://www.microsoft.com/en-us/research/project/vall-e-x

Ziel war es eigene Stimmen-Samples zu nutzen um meine Stimme zu klonen und mit
verschiedenen Ansätzen herauszufinden, wo die Grenzen des Modells liegen und um
stabilere Ergebnisse zu erhalten

Umsetzung

Ich habe das bestehende VALL-E-X-Projekt lokal eingerichtet und nicht das Modell
selbst verändert, sondern nur zusätzliche ergänzt, angepasste Bereiche sind:

• Eigene Sprachsamples

• Textprompts

• Kombinieren von Samples zu einem Voice-Embedding

• Erzwingen von einem CPU-kompatiblen Modus

• Laden von benötigten Modellen

• Kleinere Code-Anpassungen

Kombinierte Embeddings

Für die Arbeit mit mehreren Samples habe ich eine Hilfsfunktion erstellt, die:

• aus einem neuen .wav-Sample temporär ein Prompt-Embedding erzeugt

• Audio-Tokens und Text-Tokens extrahiert

• diese Tokens an ein bestehendes Embedding anhängt

• das kombinierte Embedding wieder speichert

• jedes neue Sample erweitert vorhandene Embedding

https://github.com/Plachtaa/VALL-E-X
https://www.microsoft.com/en-us/research/project/vall-e-x

Sprachsamples

• Samples 1–4: unterschiedliche gesprochene Inhalte, nicht direkt auf den
Textprompt abgestimmt

• Sample 5: Kein Sprechtext, nur “Geräusche” verschlechterten Ergebnisse

• Sample 6: Deutsch – für diese Tests unbrauchbar

• Samples 07–09: enthalten explizit Wörter aus „The quick brown fox jumps over
the lazy dog.“ auf verschiedene Weisen

Text-Prompts

Test:

„Sample ‘x’. Hello this is my cloned voice speaking! Do I sound at all close to the
real thing? The quick brown fox jumps over the lazy dog.“

Humanized:

Zusätze wie: „uh“, „um“, „ha ha ha“, sigh, breathes, laughs

Fox:

„The quick brown fox jumps over the lazy dog.“

Hello World:

„This is my cloned voice, hello world!“

Other:

„She sells seashells by the seashore.“

„Ha ha ha, um. Uhhh, hahah.“

Ergebnisse

Struktur der Ordner

• Single Samples
Audio aus einem einzelnen Sprachsample

o Ordner für Test, Humaized und Fox Prompt Ergebnisse

• Embedding
Audio aus kombinierten Embeddings (mehrere Samples)

o Ordner für Fox, Hello World and Other Prompt Ergebnisse

Single-Sample-Ergebnisse

Test:

sample1_cloned.wav / sample2_cloned.wav / sample3_cloned.wav /
sample4_cloned.wav (LAUT) / sample5_cloned.wav

Fox:

sample1.humanized_cloned.wav / sample1.2_cloned.wav /
sample2.2_cloned.wav / sample3.2_cloned.wav / sample4.2_cloned.wav /
sample5.2_cloned.wav

Embedding-Ergebnisse (kombinierte Samples)

Fox:

sample07_e.wav (STUMM) / sample07_08_e.wav / sample07-09_e.wav (STUMM)
/ sample07-09_1_e.wav / sample07-09_1_2_e.wav / sample07-09_1-3_e.wav /
sample07-09_1-4_e.wav / sample07-09_1-5_e.wav / sample07-09_1-5_07_e.wav
(STUMM) / sample07-09_1-5_07_08_e.wav / sample07-09_1-5_07-09_e.wav

Hello World:

all_samples+07.wav / all_samples+07,08.wav / all_samples+07-09.wav /
all_samples+07-09+1.wav / all_samples+07-09+1,2.wav / all_samples+07-09+1-
3.wav / all_samples+07-09+1-4.wav (SEHR LAUT) / all_samples+07-09+1-5.wav

Other:

all_samples_humanized.wav / all_samples_tonguetwister.wav

Mit zunehmender Anzahl kombinierter Samples wurden Stimme und Intonation
konsistenter, jedoch hat erneutes Nutzen von Samples die Ergebnisse stark beeinflusst,
somit sind einzelne Ergebnisse im Sprechen der Prompts gescheitert.

Fazit

Das Projekt zeigt, wie eine lokale Methode zum Klonen von Stimmen mit KI umgesetzt
werden kann. Dabei wurde deutlich, dass der locale Ansatz im Vergleich zu externen
Voice-Cloning-Diensten deutlich schwächer ist und gleichzeitig mehr Aufwand
erfordert. Positiv ist jedoch, dass sich dadurch zeigt, dass Voice Cloning bei lokaler
Umsetzung nicht einfach Auszunutzen ist und schon ein gewisses technisches
Verständnis voraussetzt.

Außerdem wurde der Unterschied zwischen Voice Cloning mit einzelnen Samples und
mit kombinierten Embeddings sichtbar. Einzelne Samples liefern stark vom Input
abhängige Ergebnisse, während kombinierte Embeddings ein bisschen stabiler waren.
Trotzdem ist auch diese Methode nicht perfekt und benötigt mehrere gute
Sprachsamples, um wirklich brauchbare Resultate zu liefern.

Einen großen Einfluss hatte die Qualität der Samples. Sprache, Inhalt und
Aufnahmequalität haben sehr stark auf das Ergebnis eingewirkt. Samples, die nicht zum
gewünschten Text passen oder in einer anderen Sprache aufgenommen wurden,
führten zu schlechteren oder sogar unbrauchbaren Resultaten. Daraus lässt sich
schließen, dass man die Grenzen des Modells kennen muss, um es sinnvoll zu nutzen.

Zusätzlich habe ich gelernt, mit der Anwendung umzugehen, wobei ein großer Teil der
Arbeit in das Einrichten des Projekts und in das Aufnehmen der Samples geflossen ist.
Die Audiogenerierung selbst nahm ebenfalls viel Zeit in Anspruch. Insgesamt hat das
Projekt gezeigt, dass gute Ergebnisse nur mit passenden Samples, Geduld und einem
ausreichendem Verständnis der Modellgrenzen möglich sind.

Leider hatte ich ein Paar Probleme ein GitHub Repository zu erstellen, sowohl mit
großen Dateien, als auch ohne. Deshalb hier einmal die Code Teile an denen ich
gearbietet, oder etwas verändert habe.

testclone.py
import os
from scipy.io.wavfile import write as write_wav
from utils.generation import SAMPLE_RATE, generate_audio, preload_models
from utils.voice_enroll import update_combined_embedding

CPU-safe
os.environ["CUDA_VISIBLE_DEVICES"] = ""
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"

Paths
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
combined_voice_name = "sample0"
voice_file = os.path.join(BASE_DIR, "data/voices/wavs/sample08.wav") ###
output_dir = os.path.join(BASE_DIR, "results")
output_file = os.path.join(output_dir, f"{combined_voice_name}.19_cloned.wav")

text prompt
text_to_speak = "ha ha ha, um. uhhh, hahah."

Add to combined embedding
update_combined_embedding(combined_voice_name, voice_file)

Generate audio using all enrolled samples
preload_models()
audio_array = generate_audio(text_to_speak, prompt=combined_voice_name)

Save

os.makedirs(output_dir, exist_ok=True)
write_wav(output_file, SAMPLE_RATE, audio_array)

print(f" Cloned voice saved to {output_file}")

voice_enroll.py
import os
import numpy as np
from utils.prompt_making import make_prompt

def update_combined_embedding(voice_name, new_wav_path, combined_dir="./customs", transcript=None):
 os.makedirs(combined_dir, exist_ok=True)

 # Create temp embedding
 make_prompt(
 name=voice_name,
 audio_prompt_path=new_wav_path,
 transcript=transcript
)

 temp_npz = os.path.join(combined_dir, f"{voice_name}.npz")

 with np.load(temp_npz, allow_pickle=True) as data:
 new_audio_tokens = data["audio_tokens"]
 new_text_tokens = data["text_tokens"]
 lang_code = data["lang_code"]

 # close file before deleting
 os.remove(temp_npz)

 combined_path = os.path.join(combined_dir, f"{voice_name}.npz")

 if os.path.exists(combined_path):
 with np.load(combined_path, allow_pickle=True) as existing:
 audio_tokens = np.concatenate(
 [existing["audio_tokens"], new_audio_tokens], axis=0
)
 text_tokens = np.concatenate(
 [existing["text_tokens"], new_text_tokens], axis=0
)
 # keep original language
 lang_code = existing["lang_code"]
 else:
 audio_tokens = new_audio_tokens
 text_tokens = new_text_tokens

 np.savez(
 combined_path,
 audio_tokens=audio_tokens,
 text_tokens=text_tokens,
 lang_code=lang_code
)

 print(f" Updated combined embedding: {combined_path}")

prompt_making.py
import os
import torch
import torchaudio
import logging
import langid
import whisper
langid.set_languages(['en', 'zh', 'ja'])

import numpy as np
from data.tokenizer import (
 AudioTokenizer,
 tokenize_audio,
)
from data.collation import get_text_token_collater
from utils.g2p import PhonemeBpeTokenizer

from macros import *

text_tokenizer = PhonemeBpeTokenizer(tokenizer_path="./utils/g2p/bpe_69.json")
text_collater = get_text_token_collater()

device = torch.device("cpu")
if torch.cuda.is_available():
 device = torch.device("cuda", 0)
if torch.backends.mps.is_available():
 device = torch.device("mps")
codec = AudioTokenizer(device)

if not os.path.exists("./whisper/"): os.mkdir("./whisper/")
whisper_model = None

@torch.no_grad()
def transcribe_one(model, audio_path):
 # load audio and pad/trim it to fit 30 seconds
 audio = whisper.load_audio(audio_path)
 audio = whisper.pad_or_trim(audio)

 # make log-Mel spectrogram and move to the same device as the model
 mel = whisper.log_mel_spectrogram(audio).to(model.device)

 # detect the spoken language
 _, probs = model.detect_language(mel)
 print(f"Detected language: {max(probs, key=probs.get)}")
 lang = max(probs, key=probs.get)
 # decode the audio
 options = whisper.DecodingOptions(temperature=1.0, best_of=5, fp16=False if device == torch.device("cpu") else True, sample_l en=150)
 result = whisper.decode(model, mel, options)

 # print the recognized text
 print(result.text)

 text_pr = result.text
 if text_pr.strip(" ")[-1] not in "?!.,。，？！。、":
 text_pr += "."
 return lang, text_pr

def make_prompt(name, audio_prompt_path, transcript=None):
 global model, text_collater, text_tokenizer, codec
 wav_pr, sr = torchaudio.load(audio_prompt_path)
 # check length
 if wav_pr.size(-1) / sr > 15:
 raise ValueError(f"Prompt too long, expect length below 15 seconds, got {wav_pr / sr} seconds.")
 if wav_pr.size(0) == 2:
 wav_pr = wav_pr.mean(0, keepdim=True)
 text_pr, lang_pr = make_transcript(name, wav_pr, sr, transcript)

 # tokenize audio
 encoded_frames = tokenize_audio(codec, (wav_pr, sr))
 audio_tokens = encoded_frames[0][0].transpose(2, 1).cpu().numpy()

 # tokenize text
 phonemes, langs = text_tokenizer.tokenize(text=f"{text_pr}".strip())
 text_tokens, enroll_x_lens = text_collater(
 [
 phonemes
]
)

 message = f"Detected language: {lang_pr}\n Detected text {text_pr}\n"

 # save as npz file
 save_path = os.path.join("./customs/", f"{name}.npz")
 np.savez(save_path, audio_tokens=audio_tokens, text_tokens=text_tokens, lang_code=lang2code[lang_pr])
 logging.info(f"Successful. Prompt saved to {save_path}")

def make_transcript(name, wav, sr, transcript=None):

 if not isinstance(wav, torch.FloatTensor):
 wav = torch.tensor(wav)
 if wav.abs().max() > 1:
 wav /= wav.abs().max()
 if wav.size(-1) == 2:
 wav = wav.mean(-1, keepdim=False)
 if wav.ndim == 1:
 wav = wav.unsqueeze(0)
 assert wav.ndim and wav.size(0) == 1
 if transcript is None or transcript == "":
 logging.info("Transcript not given, using Whisper...")
 global whisper_model
 if whisper_model is None:
 whisper_model = whisper.load_model("medium", download_root=os.path.join(os.getcwd(), "whisper"))
 whisper_model.to(device)
 torchaudio.save(f"./prompts/{name}.wav", wav, sr)
 lang, text = transcribe_one(whisper_model, f"./prompts/{name}.wav")
 lang_token = lang2token[lang]
 text = lang_token + text + lang_token
 os.remove(f"./prompts/{name}.wav")
 whisper_model.cpu()
 else:
 text = transcript
 lang, _ = langid.classify(text)
 lang_token = lang2token[lang]
 text = lang_token + text + lang_token

 torch.cuda.empty_cache()
 return text, lang

