

Free3D: Free-viewpoint 3D Video Creation

Felix Brunn, Jan Christmeier, Nick Philipp Häcker, Patrick Kaserer, Laura Christin Stempfle, Lukas Willmann, Simon Zakowski, and **Prof. Dr. Uwe Hahne**

Furtwangen University, Germany - 2024

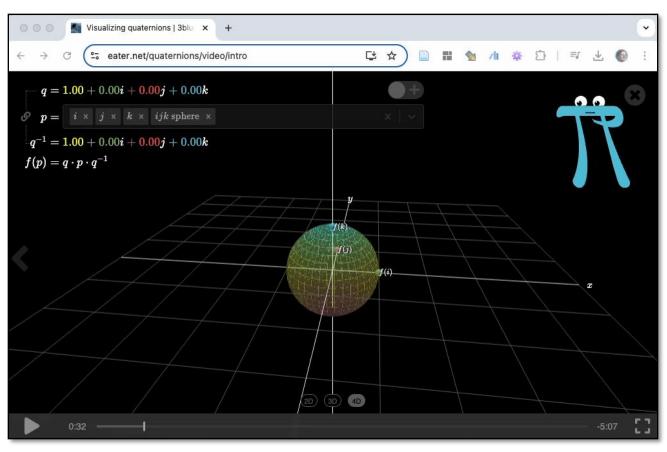
Teaser

Inspiration from Arts&Science

Woodkid at ZDF Magazin Royale:

[[]Video source: ZDF Magazin Royale]

Dynamic 3D Gaussians:


[[]Video source: Jonathon Luiten]

Inspiration from Education

Visualizing quaternions: An explorable video series

Lessons by Grant Sanderson, Technology by Ben Eater

[Video source: Ben Eater]

Introduction

- The Free3D project focuses on creating 3D videos using just three Azure Kinect cameras.
- Utilizes innovative techniques such as NeRF (Neural Radiance Fields) and 3D Gaussian Splatting.
- The goal is to create high-quality 3D images and videos from any viewpoint, while minimizing setup complexity.

[Image source: Microsoft]

[Video source: Matthew Tancik]

Project Goal: Learn

- This was a student research project, aimed at giving students hands-on experience in cutting-edge 3D reconstruction and visualization.
- The main goal was to learn about modern methods like NeRF and 3D Gaussian Splatting and explore their practical applications.
- Students gain experience in project work by combining theory with real-world applications.

Motivation

Science & Technology

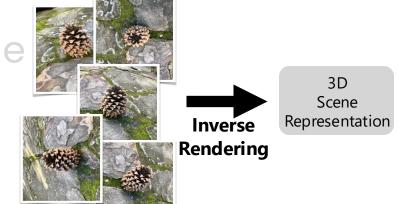
- How to implement an **easy-to-setup** capture system with limited resources?
- How to capture a dynamic 3D scene?
- How to store, transfer and visualize such a dynamic 3D scene?

Application

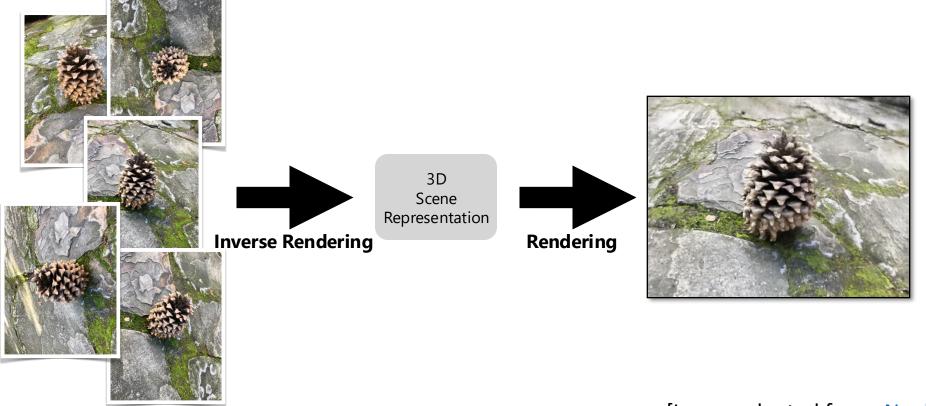
- An approach to enhance online education by making complex concepts more interactive and easier to learn.
- Explore the potentials to include
 Augmented Reality into classrooms.

Related work

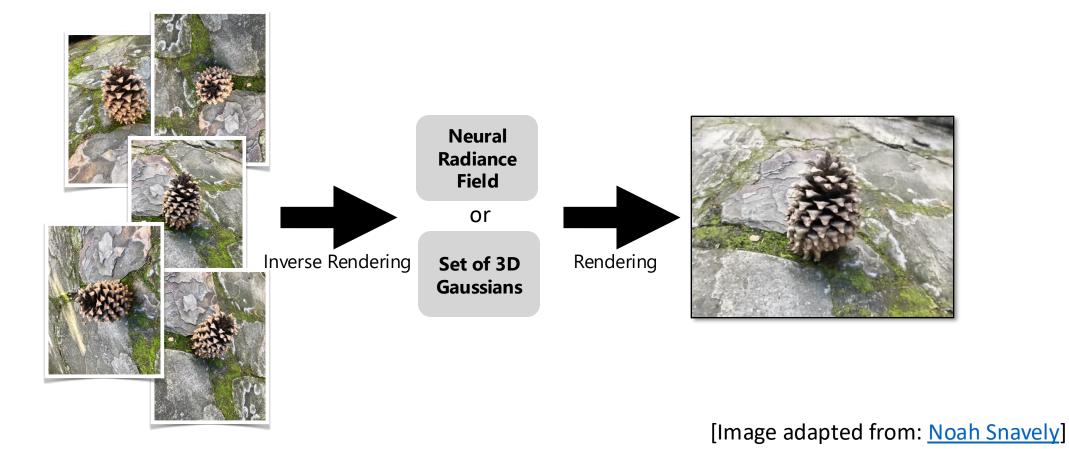
- **VoluProf** Volumetric professor for omnipresent and user-optimized teaching in mixed reality (BMBF project)
- State of the art in 3D video:
 - [Lin et al. 23] Im4D: Combines grid-based and image-based methods.
 - [Xu et al. 24] **4K4D**: Achieves real-time 3D synthesis at 4K resolution.
 - [Luiten et al. 24] **Dynamic 3D Gaussians**: Tracks dynamic scenes without needing correspondence or flow data.

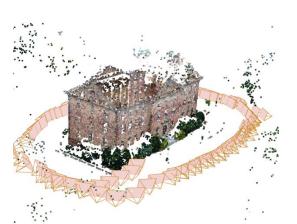


Name	Neural Radiance Fields	3D Gaussian Splatting
Paper title	<i>NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis</i>	3D Gaussian Splatting for Real-Time Radiance Field Rendering
Conference, Year	ECCV 2020	Siggraph 2023
First Author(s)	Ben Mildenhall, Pratul P. Srinivasan and Matthew Tancik	Bernhard Kerbl
Citation count at Google Scholar per month since official publication	180	120


- Both are **inverse rendering** methods
- Both need the extrinsic calibration of the cameras
- Both use the gradient flow from volume rendering for optimization

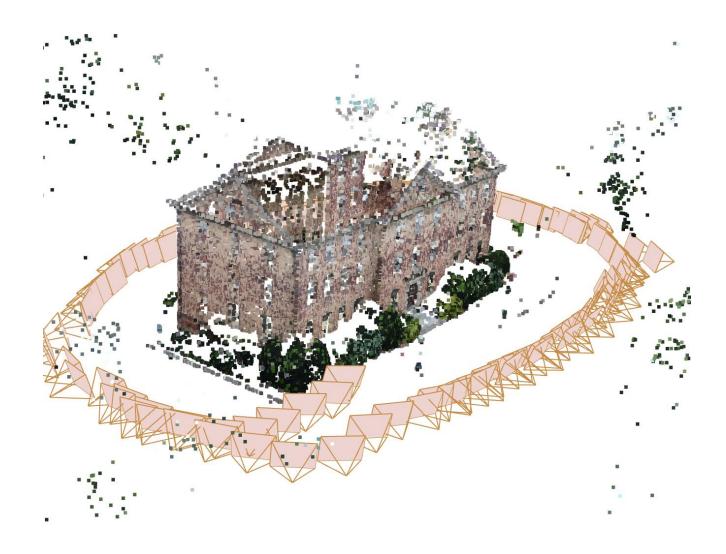
- For NeRF images, each pixel is computed from one ray
 - Bottle neck is sampling empty space
- Gaussian Splatting computes the whole image (in tiles)
 - Using 3D Gaussians as primitives
 - Bottle neck is sorting the primitives


Inverse rendering

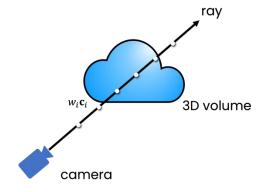

[Image adapted from: Noah Snavely]

Inverse rendering

- Both are **inverse rendering** methods
- Both need the extrinsic calibration of the cameras
- Both use the gradient flow from volume rendering for optimization
- For NeRF images, each pixel is computed from one ray
 - Bottle neck is sampling empty space
- Gaussian Splatting computes the whole image (in tiles)
 - Using 3D Gaussians as primitives
 - Bottle neck is sorting the primitives

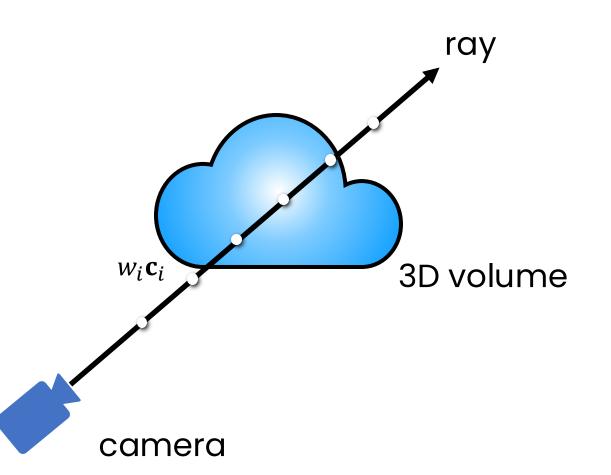

Extrinsic calibration

We need to know from where in space the images have been captured – **extrinsic** calibration.


Typically extracted with **structure-from-motion** methods.

Most popular tool: **COLMAP**

- Both are **inverse rendering** methods
- Both need the extrinsic calibration of the cameras
- Both use the gradient flow from volume rendering for optimization
- For NeRF images, each pixel is computed from one ray
 - Bottle neck is sampling empty space
- Gaussian Splatting computes the whole image (in tiles)
 - Using **3D Gaussians as primitives**
 - Bottle neck is sorting the primitives

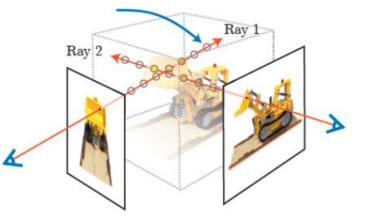

Volume rendering

For each pixel, shoot a ray through the volume that's meant to be visualized.

The resulting pixel color is the integral sum of weighted color values $(w_i \mathbf{c}_i)$.

The opacity (transparency) and visibility (transmittance) defines the weights (w_i) .

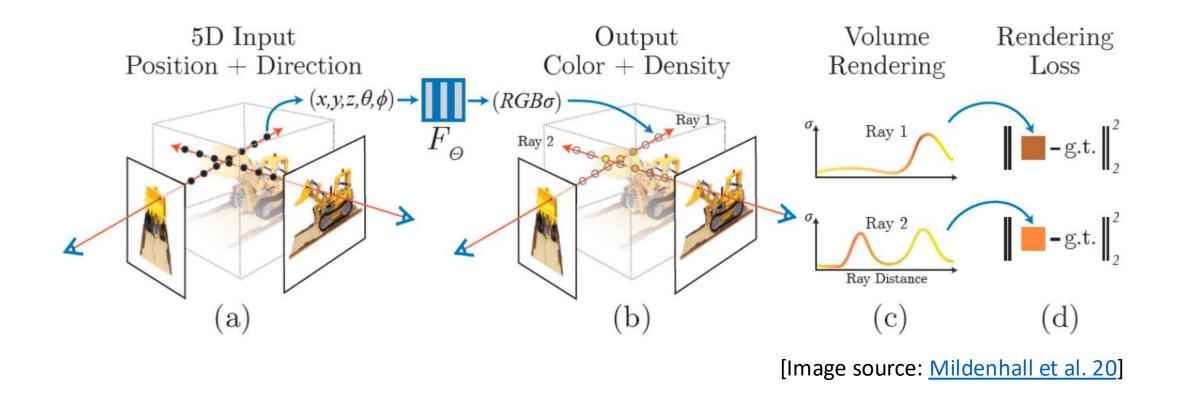
As it is an integral, it is easily differentiable and hence we can use gradient descent to optimize the result.



[Image adapted from: Pratul Srinivasan]

HOCHSCHULE FURTWANGEN UNIVERSITY

HOCHSCHULE FURTWANGEN UNIVERSITY

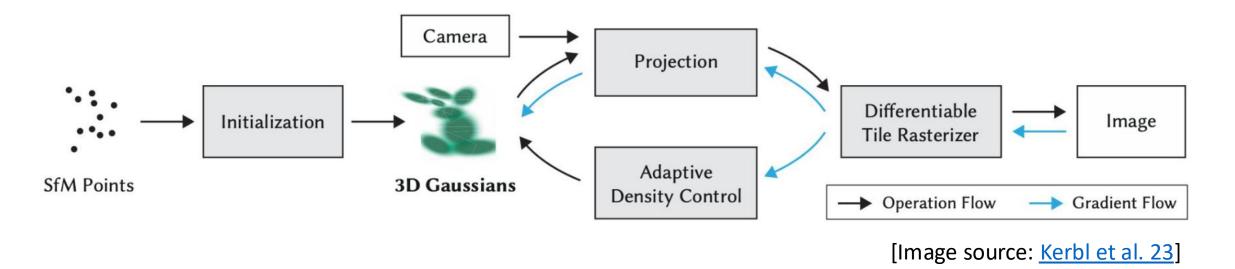

- Both are **inverse rendering** methods
- Both need the extrinsic calibration of the cameras
- Both use the gradient flow from volume rendering for optimization
- For NeRF images, each pixel is computed from one ray
 - Bottle neck is sampling empty space
- Gaussian Splatting computes the whole image (in tiles)
 - Using **3D Gaussians as primitives**
 - Bottle neck is sorting the primitives

Fundamentals: NeRF

 NeRF samples along the ray which typically goes through a lot of empty space.

HOCHSCHULE FURTWANGEN UNIVERSITY

- Both are **inverse rendering** methods
- Both need the extrinsic calibration of the cameras
- Both use the gradient flow from volume rendering for optimization
- For NeRF images, each pixel is computed from one ray
 - Bottle neck is sampling empty space
- Gaussian Splatting computes the whole image (in tiles)
 - Using **3D Gaussians as primitives**
 - Bottle neck is sorting the primitives



3D Gaussians

Fundamentals: 3DGS

- Goal is to preserve continuous properties, but avoid computations in empty space
- Faster in rendering using tile rasterizer
- Explicit **primitives** (3D Gaussians) instead of a neural net

NeRF

Gaussian Splatting

NeRF vs Gaussian Splatting

- Both try to **overfit the model** as much as possible
- Both are originally designed for **static scenes**

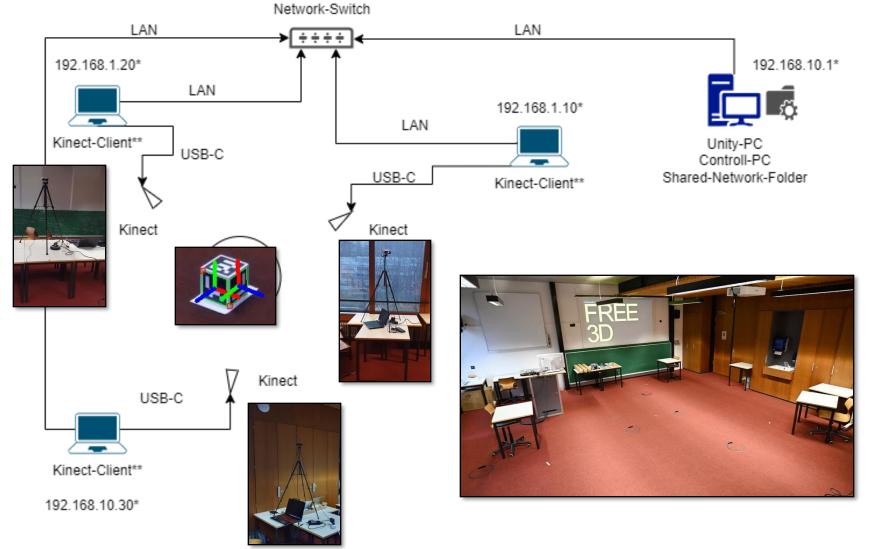
- Both have a high computational demand
 - Development supported by Google and/or NVIDIA

Our approach

- **Combine** NeRF or Gaussian Splatting with dynamic scenes captured by three Azure Kinect (depth) cameras
- Deal with **limited computational** resources to make the creation process accessible.
- Create visual high-quality results that illustrate the potential of 3D video

[Image source: Microsoft]

[Image source: NVIDIA]


Our setup

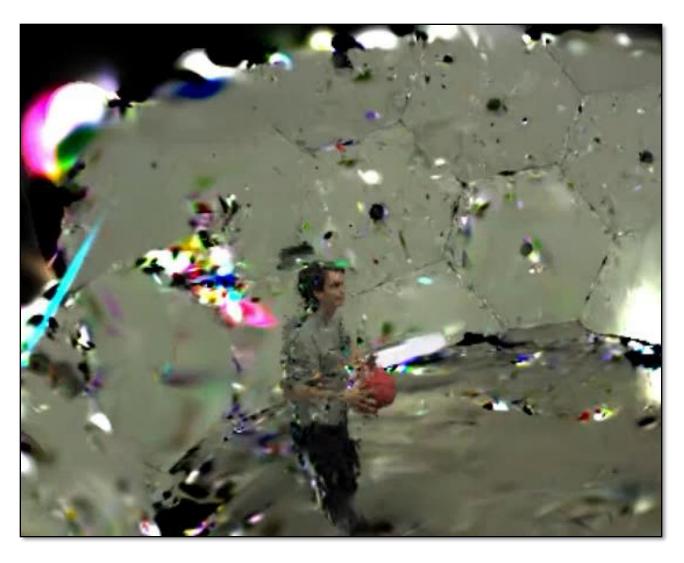
Three Azure Kinect cameras on tripods in a triangular arrangement.

Camera **synchronization** with audio cables.

Extrinsic calibration is done with ArUco markers on a cube.

Naive approach

Reproducing results from **Dynamic 3D Gaussians** [Luiten et al. 24]



Naive approach

Reproducing results from **Dynamic 3D Gaussians** [Luiten et al. 24]

...but only use three cameras out of 29.

Our solution

Dynamic Scenes

Fused real-time RGB-D point clouds from the three calibrated Azure Kinect cameras.

Our solution

Dynamic Scenes Fused real-time RGB-D point clouds from the three calibrated Azure Kinect cameras.

Automated masking The person is masked using the segmentation model SAM-HQ [Ke et al. 23]

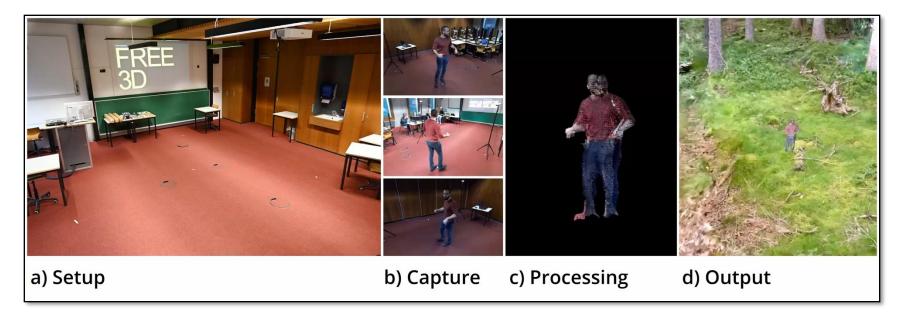
Our solution

Dynamic Scenes

Automated masking

Static Backgrounds Generated using NeRF or 3D Gaussian Splatting.

Resulting process



Setup: Place three Azure Kinect cameras on tripods in a triangular arrangement, connect the cables and run the calibration script (15 min).

Capture: The person needs to be in the middle between the cameras and act as intended while an operator starts and stops the recording (up to 30 s).

Processing: The data is transferred to a desktop PC to be processed. The person is masked out, the point clouds are merged and then blended into a pre-recorded NeRF or 3DGS scene (10 min).

Output: A camera path is rendered from the combined scene and the resulting video file can be sent to the user (2-5 min).

Final results

Conclusion

- We had a lot of fun and learned many things about the new technologies and the challenges of 3D video.
- The Free3D project provides a lightweight, cost-effective solution for 3D video creation.
- Combines novel techniques to offer a simplified setup that produces **visually impressive results**.
- A **promising tool for education** and other applications requiring immersive, dynamic visualizations.

No future work

• Students graduate and leave 🛞

Future work

- Students do further research on the application of NeRF and 3D Gaussian Splatting in real world scenarios
- Focus on more complex and larger-scale scenes:

We try to reconstruct the whole campus at Furtwangen.

...and we a searching for partners and supporters!

References

- [Kerbl et al. 23] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3D Gaussian Splatting for Real-Time Radiance Field Rendering, SIGGRAPH 2023 (ACM Transactions on Graphics)
- [Luiten et al. 24] Jonathon Luiten, Georgios Kopanas, Bastian Leibe, and Deva Ramanan. Dynamic 3d gaussians: Tracking by persistent dynamic view synthesis -International Conference on 3D Vision (3DV) 2024
- [Lin et al. 23] Haotong Lin, Sida Peng, Zhen Xu, Tao Xie, Xingyi He, Hujun Bao, and Xiaowei Zhou. Im4D: High-Fidelity and Real-Time Novel View Synthesis for Dynamic Scenes, SIGGRAPH Asia 2023
- [Mildenhall et al. 20] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020.
- [Xu et al. 24] Zhen Xu, Sida Peng, Haotong Lin, Guangzhao He, Jiaming Sun, Yujun Shen, Hujun Bao, and Xiaowei Zhou. 4K4D: Real-Time 4D View Synthesis at 4K Resolution, CVPR 2024.
- [Ke et al. 23] Lei Ke, Mingqiao Ye, Martin Danelljan, Yifan Liu, Yu-Wing Tai, Chi-Keung Tang, Fisher Yu, SAM-HQ: Segment Anything in High Quality, NeurIPS 2023