

Digitale Holographie

Benjamin Schmidt Uwe Hahne

Overview

- Introduction
- Holographic printing
- Two-Step-Method
- One-Step-Method
- Rendering
- Amount of data
- Producing our hologram
- Applications

Introduction

- Traditional holograms
- Electro-holography vs digital holography
 - Fringe computation vs rendering
 - Realtime vs realism
 - Flexibility vs accuracy
- HPO or full parallax

Holographic Printing

- How do we print a hologram?
- Content is shown on a LCD / SLM
- Content is exposed on certain point on filmplate using slits

Holographic Printing

- Film plate moves
- Slit width ~ 1-5 mm adjustable
- Slits constructed to cast no shadows

Two-step-Method

- Create a master using computer-generated or photographed content
- The real image of the master is pseudoscopic
- Master hologram is created by holographic printer.
- Reprint transfer holograms to obtain holograms visible with white light

White Light Viewing of Full-Color Reflection Transfer

- Master and transfer hologram
- White-light hologram
- Full color hologram using 3 masters

One step Method

- Tries to avoid creating a master holgram
- Image has to consist out of pseudoscopic (behind) and orthoscopic (in front) parts
- With a normal camera we could achieve this effect by using a large spherical lens or two double crossed cylindrical lenses
- Rendering rebuilds the camera setup

Rendering

- Double-frustum approach
 - Positioned on the holographic plane
 - Pseudoscopic and orthoscopic

 Clipping problem with camera model

Rendering

- We have to set up two frustums
- One facing from the hologram plane to the viewer
- The other facing away from the object.
- Combine the images using the depthbuffer.
- Build a image sequence by rendering every view from each point on the holographic plane
- Viewing direction can be orthogonal or off-axis (sheared) → depends on the producing method

Rendering Pseudoscopic

- How can we render pseudoscopic
- Make the Depth-Buffer to prefer images far away and occlude close ones.
- Build up a new lighting system with N=N*, L=L*
- In a normal system the eye-vector E points from the surface to the camera position
- → In a pseudoscopic image it is opposite.

	Digital content	Real content
One- step	Render with double-frustum	Using special lenses
Two- step	Render each perspective	Photograph each perspective

Amount of Data

- Computer graphics:
 - Megabyte
- Analog holography:
 - Terabyte
- Digital holography (HPO):
 - 1024 x 768 x 24 Bit x 110 degrees at a half degree resolution ≈ 500 Mbyte (our case)
 - Gigabyte

Video

Applications

- Holograms can be used in designing processes, advertising...,
- Full Parallax-holograms provide additional possibilities
- Large and scalable holograms
- In combination with computer graphics

References

[Luc96]

Lucente, Mark. Holographic bandwidth compression using spatial subsampling. Optical Engineering, vol. 35, #6, pp. 1529-1537, 1996 June.

[Luc97]

Lucente, Mark: Interactive Three-dimensional Holographic Displays: Seeing the Future in Depth SIGGRAPH Computer Graphics, special issue on Current, New and Emerging Display Systems, 1997.

[Klu01]

Klug, Michael A.: Scalable digital holographic displays, IS&T PICS 2001: Image Processing, Image Quality, Image Capture Systems Conference, Montreal, Quebec, Canada pp. 26-32, 2001

[Klu02]

Klug, Michael A. :Display applications of large scale digital holography. Zebra Imaging, Inc. Proceedings of SPIE Volume 4737-21

[PeM03]

Christoph Petz and Marcus Magnor: Fast Hologram Synthesis for 3D Geometry Models using Graphics Hardware, Practical Holography XVII and Holographic Materials IX, Vol. 5005, SPIE Proceedings 2003

[Yam90]

M. Yamaguchi, N. Ohyama, and T. Honda, "Holographic 3-D printer," SPIE Practical Holography IV, V 1212, pp 84-92, 1990.

[CS98]

Harriet Casdin-Silver: The Art of Holography
Joyce and Edward Linde Gallery, James and Audrey Foster Galleries
/www.decordova.org/decordova/exhibit/silver/works.html

[Bim03]

Bimber, O.
Combining Optical Holograms with Interactive Computer Graphics
To appear in IEEE Computer, January 2004

[Hal97]

Michael Halle and Adam Kropp, "Fast computer graphics rendering for full parallax spatial displays," Proceedings of the IS&T/SPIE's Symposium on Electronic Imaging, S.A. Benton, ed., Practical Holography XI, February 1997

[HBK91]

M. W. Halle, S. A. Benton, M. A. Klug, J. S. Underkoffler, "The Ultragram: a generalized holographic stereogram", SPIE

Proceedings #1461 "Practical Holography V" (SPIE, Bellingham, WA, 1991), S. A. Benton, editor, pp. 142-155.

[Klu97]

Klug, M.A., Klein, A., Plesniak, W., Kropp, A., Chen, B., (1997). Optics for full-parallax holographic stereograms, in Benton, S.A., ed., SPIE Proceedings Vol. 3011: Practical Holography XI.

[Pet03]

Christoph Petz

Hologrammsynthese und 3D-Analyse in der digitalen Holografie Diploma Thesis (in German), University of Marburg, April 2003

[Hal91]

Michael Halle, The Generalized Holographic Stereogram, S.M. Thesis, Program in Media Arts and Sciences, Massachusetts Institute of Technology, February 1991.

[LG95]

Mark Lucente and Tinsley Galyean, "Rendering Interactive Holographic Images"
Proceedings of SIGGRAPH '95 (Los Angeles, CA, Aug. 6-11, 1995), pp. 387-394.