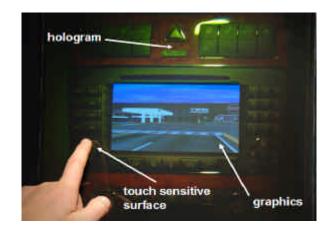

Weighting in Laplacian Mesh Editing

Diplomarbeit Uwe Hahne

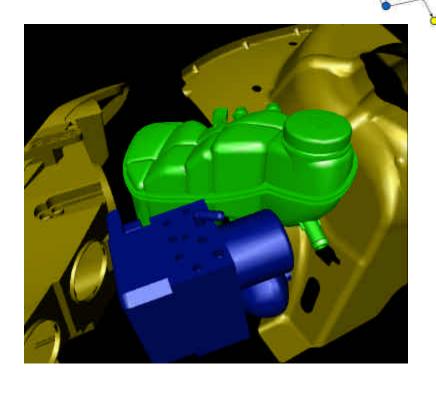
Übersicht

- Einleitung
- Aufgabenstellung
- **L**ösungsansätze
- Laplacian Mesh Editing
- Gewichtungen
- Auswirkungen
- Schlussfolgerungen
- → Ausblick



Einleitung

- Fakultät Medien der Bauhaus Universität Weimar
- Studiengang Mediensysteme (besteht seit 1999)
 - Mathematik/Informatik
 - Physik, Nachrichtentechnik, Wahrnehmungspsychologie
- Forschungsprojekte:
 - Optisches Tracking
 - Puppets and Hands
 - Programm: Literatur
 - Bahnberechnung von Gasblasen in z\u00e4hen Fl\u00fcssigkeiten
- Hilfskraft im Forschungsprojekt Holographics
- Diplomand bei DaimlerChrysler, Ulm
- Diplom-Mediensystemwissenschaftler seit 7.6.2006


Aufgabenstellung

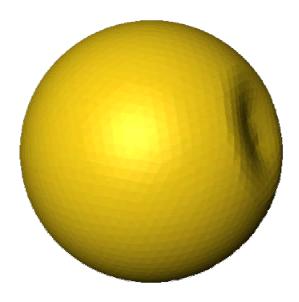
- Entwickelt für Daimler-Chrysler
- Montage- oder
 Baubarkeitsuntersuchung kompakter Motorräume
- Kollisionserkennung und Kontaktsimulation in VR mit triangulierten Modellen

Problem:

Virtuelle Objekte sind starr? Bauteile sind elastisch

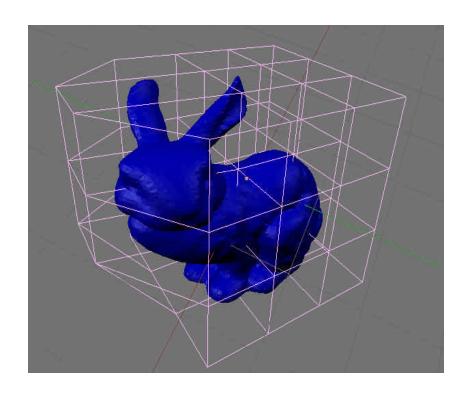
Lösung: → Interaktive Verformung

Aufgabenstellung


- Warum interaktiv und nicht automatisiert?
 - Mechaniker verformt
 Bauteile bei der Montage
 - Keine Daten über Festigkeit vorhanden
 - Objekte zu komplex um eine vernünftige Deformation zu automatisieren
- Warum nicht CAD?
 - CAD ist ungeeignet, weil in VR gearbeitet wird
 - Neue Konstruktion und Triangularisierung soll vermieden werden

Aufgabe

→ Simulation einer möglichst natürlichen Deformationen durch ein interaktives Modellierungswerkzeug



Lösungsansätze

Free Form Deformation (FFD)

[Sederbergh&Parry86]

- Hilfsgitter
- Translation der Gitterpunkte
- Interpolation desObjektes

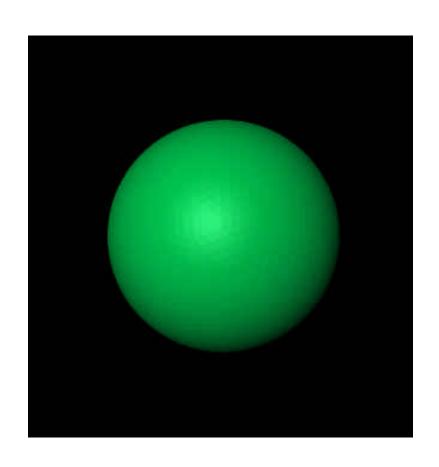
Lösungsansätze

- Multiresolution editing [Zorin, Eck, Kobbelt,...]
 - Erweiterung von FFD
 - kein Gitter → Benutzer editiert Objekt direkt (oberflächenbasiert)
 - Modell wird intern als Signal interpretiert
 - Zerlegung mit Wavelets (Multiskalenanalyse)
 - Modifikation der Grundform → Detailerhaltung

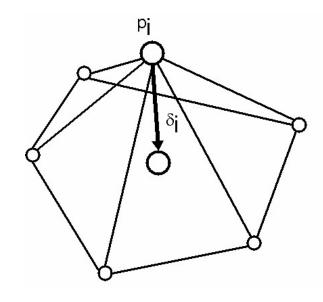
[Kobbelt98]

Lösungsansätze

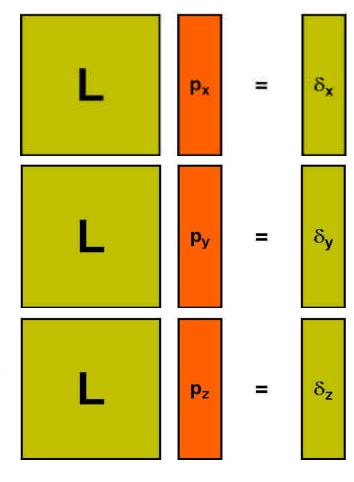
Radial Basis Functions (RBF)
 [Botsch, Kobbelt]


- Raumbasierte Deformation
- Effektive Beschreibung der Deformation als Funktion ermöglicht Beschleunigung durch Berechnung auf der GPU
- Radiale Basisfunktionen interpolieren auch stark gestreute Daten sehr weich
 - → geeignet für eingescannte Modelle mit Löchern

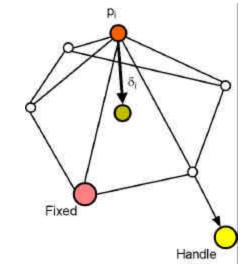
[Botsch05]

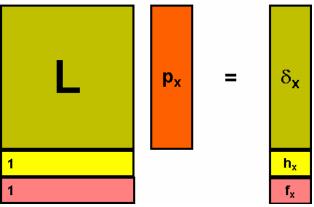


- Eigenschaften:
 - Schnell durch schwach besetzte Matrix
 - Detailerhaltend
 - Deformation ist einfach zu beeinflussen
 - Oberflächenbasiert
- Vorgang der Deformierung:
 - Benutzer selektiert einen Einflussbereich
 - Drag'n'Release
 - Umgebung wird interpoliert

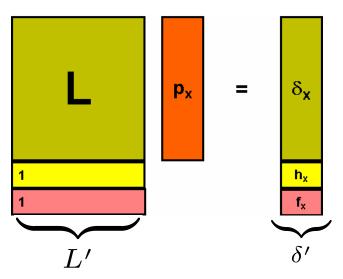

- Grundidee:
 - Implizite Darstellung des Modells
 - Detailbeschreibung durch differentielle Koordinaten oder Detailvektoren
 - Jedem Knoten wird ein Detailvektor zugeordnet der sowohl Krümmung als auch Normale enthält

- Diskretisierung des Laplace Operators - Rekonstruktion der absoluten Koordinaten aus den differentiellen Koordinaten
$$\delta_i = \vec{p_i} - \frac{1}{d} \sum_{j \in N(i)} \vec{p_j}$$




- Ablauf:
 - Nach der Selektion wird die Laplace-Matrix L konstruiert
 - Einflussbereich als Subnetz
 - L = D A
 - D: Diagonalmatrix mit Valenzen
 - **A**: Adjazenzmatrix
 - Schwach besetzt und symmetrisch
 - Jeweils ein Gleichungssystem für x,y und z, Matrix L bleibt konstant
 - Rang(\mathbf{L}) = n − 1 \rightarrow \mathbf{L} ist singulär

- Laplace-Matrix wird erweitert
- Zeilen mit den festen (Fixed) und den neu platzierten (Handle) Knoten werden an die Matrix angehängt
- Die Zeilen enthalten eine 1 an der entsprechenden Stelle
- Auf der rechten Seite werden die absoluten Koordinaten angehängt



 Lösung des überbestimmten Gleichungssystems durch Minimierung der Fehlerquadrate

$$E(V) = \min_{\vec{p}} \left(\|L\vec{p} - \delta\|^2 + \sum_{i \in H} (p_i - h_i)^2 + \sum_{j \in F} (p_j - f_j)^2 \right)$$

Durchführung mit Gauß-Transformation

$$L'\vec{p} = \delta'$$
$$L'^T L' \vec{p} = L'^T \delta'$$

$$L'^T L' \vec{p} = L'^T \delta'$$

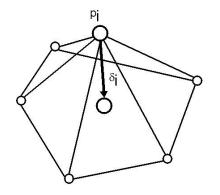
- Verwendung des Cholesky-Verfahrens:
 - Substitution

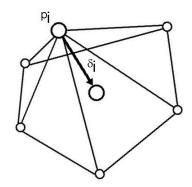
$$L'^T L' := M$$

- Zerlegung

$$M = R^T R$$

Vorwärtseinsetzen


$$R^T \xi = L'^T \delta'$$


- Rückwärtseinsetzen

$$R\vec{p} = \xi$$

- Problem:
 - Differentielle Koordinaten sind rotationsvariant

- Kaum Rotation bei Hauptanwendung (leichtes Eindrücken)
- Interpolation der Rotation beim Verbiegen

Überblick

Methode	Handhabung	Präzision	Daten	Natürlichkeit
FFD	++	-	+	
MultiRes	+	+	-	+
RBF	+	+	0	+
Laplacian	+	+	+	++

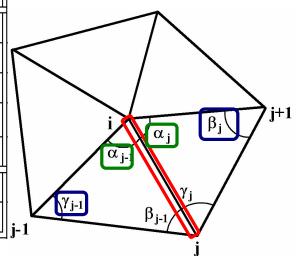
Wie kann die Deformation beeinflusst werden?

Gewichtung

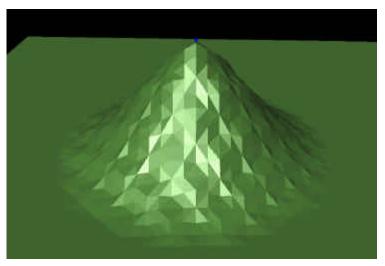
Gewichtung der Kanten beim Berechnen der Detailvektoren (differential coordinates weighting)

$$\delta_i = \frac{1}{\sum w_{ij}} \sum_{j \in N(i)} w_{ij} (\vec{p_i} - \vec{p_j})$$

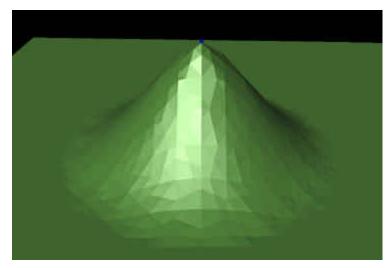
Gewichtung der einzelnen Regionen innerhalb der Minimierungsfunktion (vertex weighting)


$$E(V) = \min_{\vec{p}} \left(||L\vec{p} - \delta||^2 + \sum_{i \in H} (w_h(p_i - h_i))^2 + \sum_{j \in F} (w_f(p_j - f_j))^2 \right)$$

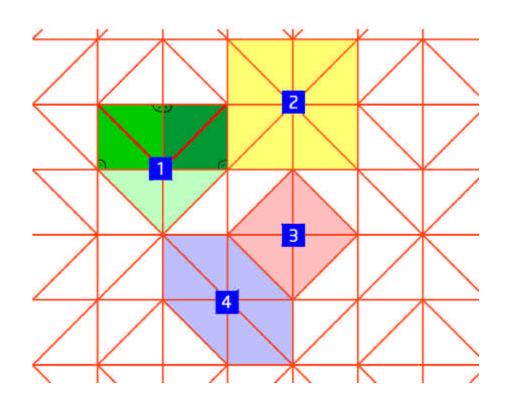
Gewichtung


• Übersicht der möglichen Gewichtungen:

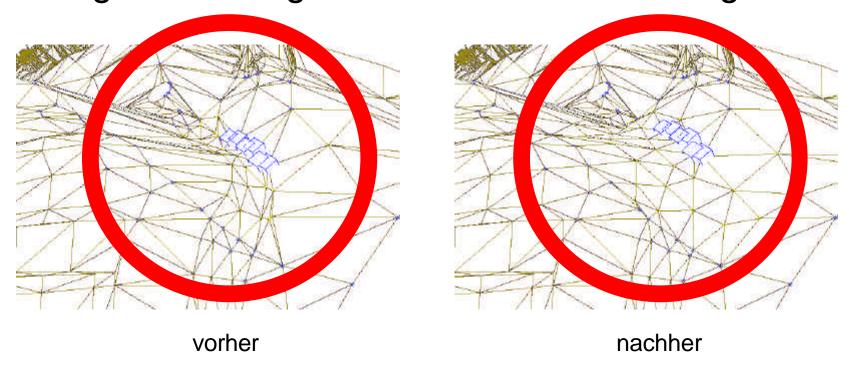
Name	Definition		
Uniform or umbrella	$w_{UNI} = 1$		
Scale-dependent umbrella	$w_{SDU} = 1/l(i,j)$		
Edge length	$w_{LEN} = l(i, j)$		
Tangent	$w_{TAN} = \frac{1}{l(i,j)} \left(\tan \frac{\alpha_j}{2} + \tan \frac{\alpha_{j-1}}{2} \right)$		
Cotangent	$w_{COT} = \cot \gamma_{j-1} + \cot \beta_j$		
Handle vertices weights	$w_h \in [1, 20]$		
Fixed vertices weights	$w_f \in [1, 20]$		



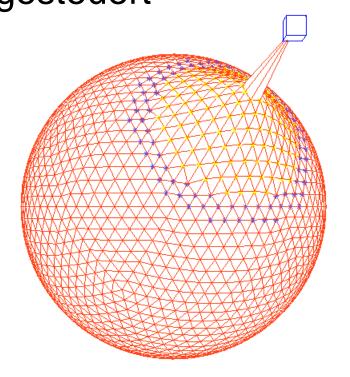
- Herausziehen eines Knotens aus einer Ebene
- Kantengewichte w_{ij} der Differentialkoordinaten:

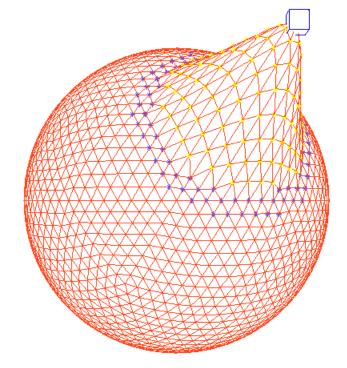

Uniform

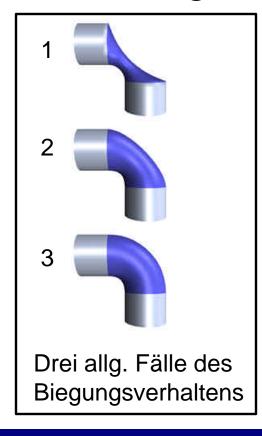
Cotangens

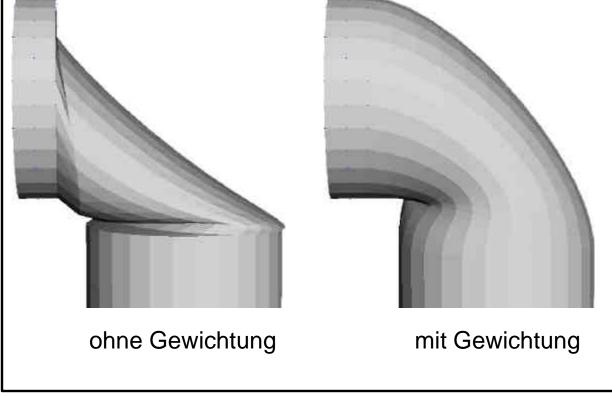


- Woher kommt dieser Effekt?
- Beispiel:
 - Detailvektor einerEbene ist derNullvektor
 - Was wird berechnet?

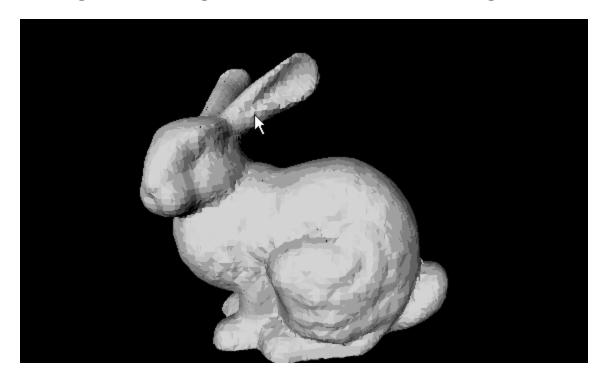



Regularisierung des Netzes durch Cotangens


Regionale Gewichtung wird mit Reglern gesteuert

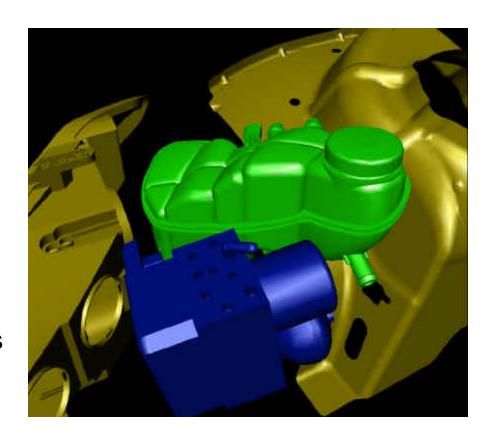


Verbiegungen



Automatische Gewichtung

 Da meist ein weicher Übergang erwünscht ist, kann die Gewichtung der Regionen automatisch gesetzt werden


Zusammenfassung

- Laplacian Mesh Editing wurde mit Hilfe von Gewichtungen an die Anwendung angepasst:
 - Einfach zu bedienen
 - Kleine Deformationen k\u00f6nnen schnell erledigt werden
 - kurze Einarbeitungsphase
 - CAD Umweg wird vermieden
- Einfluss der Gewichte ist begrenzt

Ausblick

- Beschleunigung des Systems
- Kombination mit Kollisionserkennung
 - realistische Verformung direkt durch Kollision
 - Visualisierung der Kontaktflächen
 - Beschränkung der möglichen Deformation in Abhängigkeit des Materials
 - Vorgegebene
 Gewichtungen bestimmten
 Materialien zuordnen

Ende

- Danke für die Aufmerksamkeit
- Fragen?

Quellen der Bilder

- [Kobbelt98]:
 - Leif Kobbelt, Swen Campagna, Jens Vorsatz, and Hans-Peter Seidel. Interactive multi-resolution modeling on arbitrary meshes. In SIGGRAPH '98: Proceedings of the 25th annual conference on Computer graphics and interactive techniques, pages 105–114, New York, NY, USA, 1998. ACM Press.
- [Botsch05]:
 - Mario Botsch and Leif Kobbelt. Real-Time Shape Editing using Radial Basis Functions. In Computer Graphics Forum, volume 24 of Eurographics 2005 proceedings, pages pp. 611 – 621, 2005.
- [Nealen05]
 - Andrew Nealen, Olga Sorkine, Marc Alexa, and Daniel Cohen-Or. A sketchbased interface for detail-preserving mesh editing. ACM Trans. Graph., 24(3):1142–1147, 2005.