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Abstract. In this paper we present a framework for computing depth images
at interactive rates. Our approach is based on combining time-of-flight (TOF)
range data with stereo vision. We use a per-frame confidence map extracted from
the TOF sensor data in two ways for improving the disparity estimation in the
stereo part: first, together with the TOF range data for initializing and constraining
the disparity range; and, second, together with the color image information for
segmenting the data into depth continuous areas, enabling the use of adaptive
windows for the disparity search. The resulting depth images are more accurate
than from either of the sensors. In an example application we use the depth map
to initialize the z-buffer so that virtual objects can be occluded by real objects in
an augmented reality scenario.

1 Introduction

Real time depth imaging is a building block in many interactive vision systems and,
in particular, is necessary for enabling realistic occlusions in augmented reality (AR).
Despite the improved speed of general purposes computing as well as development of
new types of sensors, providing depth images in real time continues to be a challeng-
ing problem. For the purposes of enhancing AR with convincing occlusions current
approaches are limited to either reducing quality in the depth maps [SNV02] or real-
izing occlusions by compositing [VH08]. We are demonstrating a first step toward an
affordable and lightweight solution by fusing information from a low cost but also low
resolution time-of-flight range sensor with standard correlation-based stereo.

Quite generally, we can distinguish active and passive approaches to real time depth
imaging. Active optical techniques involve relighting the scene and usually require an
expensive and heavy setup. Recently, sensors based on the time-of-flight principle for
sensing depth have become affordable and fast with the introduction of photonic mixer
devices (PMD) [MKF+05,XSH+05]: the reflection of modulated IR light is collected in
a CMOS matrix. Comparing the signal to the source modulation yields the phase, which
is a linear function of distance to the reflecting surface. PMD depth imaging works at
interactive rates, but suffers from comparably low spatial resolution of the sensor and
noise in the depth values, especially for surfaces with low reflectance.

Passive techniques, at least when several frames per second are required, are based
on multiple views of scene captured with two or more cameras. We have decided to



use a single binocular stereo camera, as more not only make the setup more compli-
cated, but also require processing more images. From the large number of stereo vision
approaches [SS02] only local correlation based methods are fast enough for real time
application [FHM+93,Hir01]. This limits the quality of the resulting depth maps, most
obviously in large featureless areas but also at depth discontinuities, where the correla-
tion window might compare different objects because of occlusion.

We combine the camera systems (time-of-flight and stereo) and fuse the data so that
limitations of each of the individual sensors are compensated. Our goal is enhancing the
high resolution color image from one of the stereo camera oculars with depth informa-
tion, gathered from the PMD camera as well as from disparity estimation. The mapping
of the PMD depth image into a color image acquired with another camera (resp. tex-
turing the depth data with the color image) has been analyzed by Reulke [Reu06] and
Lindner et al. [LKH07,LLK07]. Our setup combines the PMD camera with a binocular
stereo camera, similar to [BBK07, GAL07, HA07, NMCR08, KS06, ZWYD08].

For better explaining our choice of algorithm, we need to briefly touch on the setup,
calibration, and properties of the cameras (section 2). The physical properties of the
PMD camera give rise to the preprocessing of its data, most importantly the estimation
of confidence values for each depth value (section 3). Kuhnert and Stommel [KS06],
as well as Netramai et al. [NMCR08] use a similar confidence map to choose either
the depth value acquired with the PMD camera or depth from stereo – we exploit this
depth/confidence map for initializing and steering a local correlation based stereo algo-
rithm (section 4), in particular by choosing adaptive windows for the correlation based
on the information in both the color images and the range image.

In an earlier approach [HA07], we combined the TOF data from the PMD camera
with high resolution images from two photo cameras, using graph cuts to find a globally
optimal solution for a depth map of a single perspective. The use of graph cuts leads to
computation times that are insufficient for real-time video processing. Similarly, Guo-
mundsson et al. [GAL07], Zhu et al. [ZWYD08], and Beder et al. [BBK07] generate
depth images by fusing TOF and stereo data. Their approaches appear to be much faster
than using graph cuts, however, they target single images and provide no information on
the computation times. The choices of stereo algorithm, however, indicate that they are
not amenable to real-time processing in their current form. We explicitly start from the
restrictive setting of real-time applications, which severely restricts the choice of stereo
algorithm, mostly to local correlation with fixed windows. We use the TOF information
particularly to adapt the windows, as fixed windows fail at depth discontinuities. We
believe our approach yields depth images at interactive rates

– that are are more reliable than the information from the PMD camera without com-
promising the interactive frame rate and

– that are more accurate around depth discontinuities than real time stereo vision
approaches based on fixed window correlation.

We demonstrate our use of the system in an augmented reality (AR) scenario for com-
puting accurate occlusions between virtual and real objects.



2 Setup

Fig. 1. All three cameras mounted on an aluminum bar

We mount a compact time-of-flight camera PMDTec type [vision]19k, capturing a
depth range of about 7.5 meters at a resolution of 160x120 pixels, together with Point-
Grey Bumblebee2 stereo camera capturing color video at a resolution of 640x480, on
an aluminum rack (see Figure 1 for an image of the cameras). Both cameras are aligned
to parallel viewing directions.

2.1 Photonic mixer device depth camera

Photonic Mixer Devices (PMD) are semiconductor sensors that can be used to mea-
sure distances per pixel based on the time-of-flight principle [XSH+05,MKF+05]. The
camera system includes a light source based on infrared LEDs, illuminating the scene
with a continuously modulated signal at f = 20MHz. The sensor detects the phase shift
between the source and received signal by sampling four values per period. The phase
shift is in principle independent of the amplitudes of the signals, and since modulation
frequency f and speed of light c are constants, it relates linearly to the distance of the
reflecting object.

Measuring phase shifts has several inherent limitations: first, phase shifts have sym-
metries along the signal and are unique only in an interval of π, in this case c/2 f =
7.5m. More subtly, measuring phase shifts assumes perfectly sinusoidal signals, yet this
is not the case. This leads to a "wiggling" error in the depth measurement (see Rapp et
al. [Rap07]). Most importantly, phase shifts can only be measured accurately if the
sensor receives the right amount of light. If objects are too dark sensor noise dominates
the signal, while too much light leads to saturation and makes modulation undetectable.



As a consequence, measurements depend on object reflectance and distance to the light
source and camera. The camera allows controlling the integration time (similar to ex-
posure time in standard cameras), however, just as in photography it is often impossible
to keep all objects captured in the scene within the dynamic range of the sensor.

The camera provides the raw signal samples as well as consolidated amplitude and
depth values computed from the four samples. Interestingly, the consolidated amplitude
value is accurate only as long as the sensor is not being saturated. It is possible to detect
saturation based on the raw signal samples (see Rapp et al. [Rap07]).

The resulting depth images captured with PMD technology are noisy and contain
wrong depth values because of the phase ambiguity and objects reflecting not enough
light; whereas we have eliminated the case of reflecting too much light by adjusting the
integration time.

2.2 Calibration

Sensor fusion requires registration and accurate calibration. For both the intrinsic and
extrinsic calibration we use the calibration algorithm of Zhang [Zha99, Zha00]. The
PMD camera, however, yields intensity images that are too noisy for direct application
and they are preprocessed following the ideas of Reulke [Reu06] as well as Lindner and
Kolb [LK06]. A relevant practical problem for the extrinsic calibration is the misalign-
ment of optical center and zero depth plane of the PMD camera. Interestingly, Gud-
mundsson et al. [GAL07] perform a stereo calibration between all pairs of cameras.
We have found this to be cumbersome, because of the combination of noisy amplitude
images and the mismatch between optical center and depth image for the PMD camera.
We rather consider only the extrinsic calibration between the depth image from PMD
camera and the systems of the color cameras.

The stereo camera color images are rectified to reduce the correspondence problem
to a single line. Our calibration is accurate enough so that the depth difference between
stereo system and the PMD camera is within the accuracy of the PMD camera.

3 Preprocessing and confidence estimation

As explained in the last section, the quality of the depth values captured by the PMD
camera depends strongly on the surface of the objects in the scene. Dark and glossy
surfaces lead to artifacts as the modulated IR light is not reflected as expected. Espe-
cially when using the depth values for determining occlusions in AR applications, these
artifacts become clearly visible. We process the data prior to using it with the stereo sys-
tem, trying to improve the data by simply filtering and assigning confidence values to
each depth value. Very low confidence depth values are replaced by interpolated values
with higher confidence.

3.1 Filtering

Reducing the noise or removing outliers is one obvious part of the pre-process. Isolated
outliers can be removed at minimal cost using median filtering. Through experimenta-
tion we have found that a small kernel of 3× 3 pixel is sufficient. This appears to be



(a) Depth image (b) Amplitude image (c) Confidence map

Fig. 2. A checkerboard is difficult to reconstruct using PMD range sensing, because of the insuf-
ficient amount of light reflected by the black areas. The acquired depth image (a) clearly holds
wrong depth values in these black areas. The amplitude image (b) can be used to compute a con-
fidence map (c), which is thresholded to classify depth values as valid (white) or invalid (black).

due to the outliers being mostly isolated pixels. Larger kernels would lead to longer
processing times without showing a significant improvement.

3.2 Confidence estimation

As explained in the last section, in our setup, the dominant cause for systematically
wrong depth estimation are objects that have bad reflection properties due to their ma-
terial and color. However, this information is available in form of an amplitude image
of the scene.

Fig. 3. Scanline interpolation of the PMD data using the confidence map. The red line is the
interpolated depth, the dashed line is the original unreliable PMD depth.

The first step in turning the amplitude image into a confidence map is applying a
3× 3 median filter, similar to the process for the depth image. The resulting image is
thresholded, yielding a binary confidence map classifying depth values as either valid or
invalid. Figure 2 highlights the problems resulting from low reflectivity at the example
of a checkerboard and shows the resulting classification of valid and invalid depth values
(while the 3D reconstruction from the wrong depth values can be seen in Fig. 4(a)).



(a) Original image (b) With interpolation

Fig. 4. 3D reconstruction of the scene from the depth image (and using the intrinsic camera ge-
ometry). The left image shows the reconstruction from the data in Figure 2(a) and the right image
uses linearly interpolated depth values for elements with low confidence.

3.3 Interpolation

In all regions marked as confident by the binary map, we will use depth values for
initializing disparities. In most cases the depth values in insufficiently reflecting areas
are far from the truth and it is better to assume continuity in depth.

As in our case the interpolated depth values will later be corrected using the stereo
information, we opt for a simple approach that is as fast as possible: the depth image is
scanned across horizontal lines. When an invalid segment is encountered it is replaced
by either a line connecting the two valid depth values at the boundary of the segment
or a line with constant depth values at the boundaries of the image (see Figure 3). For
textured planar surfaces (such as the checkerboard, see Figure 4(b)) this provides a
reasonable estimate; if objects of low reflectance differ in depth from the surrounding
they will be assigned wrong depth values, which will be corrected in the stereo part of
the algorithm.

4 Algorithm

In our exemplary AR applications with dynamic occlusions we need to enhance one
color image from the stereo camera with depth information. We compute depth values
at the resolution of the PMD camera. The algorithm we suggest is equally applicable
for computing depth at higher resolution or textured surfaces in other views.

The main steps of assigning depth values to pixels are as follows (see also Figure 5):

1. The pixel coordinates and depth values from the PMD camera are used for gener-
ating a tessellated depth surface (i.e. quad mesh) of the scene from this viewpoint.

2. The surface is transformed into the view space of the cameras. The intersections
of view rays with the surface in this coordinate system define initial disparity val-
ues; the associated confidence values define the possible range. Thresholding the
confidence values yields a set of valid and invalid depth coordinates in the quad
mesh.



Fig. 5. Algorithm overview

3. The areas of pixels associated to valid and invalid depth coordinates are thinned and
serve as the initialization of a segmentation of the color image into depth continuous
regions.

4. The segmentation steers adaptive windows for the correlation computation in a
standard stereo algorithm, correcting the invalid depth coordinates of the surface
mesh.

In the following, we discuss several details of these steps.

4.1 Mesh initialization and projection

The intrinsic calibration of the PMD camera allows computing 3D coordinates from
pixel location in the image plane and the corresponding depth value. For convenience,
we connect the 3D coordinates to a piecewise bilinear mesh. The extrinsic calibration
between the cameras allows transforming the mesh into the coordinate systems of the
stereo camera. The intrinsic calibration of the stereo cameras (including a rectification)
defines a projective transformation, which yields depth and confidence values per pixel.

The labels define two regions in the color images: a region of valid and a region of
invalid pixels, based on the binary confidence map. Figure 6 shows the projection of the



(a) Rectified Left View (b) Stereo operation map

Fig. 6. Color coded vertices of the surface mesh, where red vertices are invalid and will be cor-
rected using stereo vision.

mesh in the left camera. The projection of valid vertices are drawn as gray squares and
invalid pixels are drawn as red squares.

4.2 On-demand stereo with adaptive windows

Instead of computing a whole disparity map, the use of our stereo part is computing
depth values only for vertices that are marked invalid. Furthermore, the projection of
these vertices into the two rectified stereo views immediately yields an initial disparity
guess.

An underlying assumption of correlation based stereo algorithms is that depth is un-
ambiguous in the correlation window. This is not the case at depth discontinuities where
objects may be occluded in only one of the views so that correlation of pixel colors fails
to be a good indicator for correspondence (Figure 7(b) illustrates this situation).

A solution to this problem is to adapt the correspondence window to the (likely)
object boundaries. Kanade and Okutomi [KO94] suggest to adapt the size and shape of
the rectangular correlation window to local disparity characteristics. Boykov et al. gen-
eralize this variable window approach [BVZ98]. They compute for each pixel a new
window. This window contains all pixels with an intensity close to the considered pixel.
This way, they try to model the boundaries of the objects and the depth discontinuities.
Hirschmüller [Hir01] proposes a similar approach using multiple supporting windows.
Unfortunately, all of these techniques are too costly to reach interactive rates at video
resolution of 640 by 480 pixels.

Our main observation is that the object boundaries are only relevant if they are in
regions whose depth values are labeled as invalid – otherwise the depth values have
already been gathered based on TOF. Thus, we can use the information on valid and
invalid regions for initializing a segmentation algorithm in the color images. The seg-
mentation will then define the extent of the correlation windows used in our adaptive
window stereo algorithm. Exploiting the confidence information makes our approach
both much faster and also more robust than only working with the color images.

From the many potential segmentation algorithms we use the marker-controlled wa-
tershed algorithm [RM00], which we have found to be robust while being fast enough



(a) Full left view (b) Right view (detail) and cost function
(fixed window)

(c) Eroded operation map and segmentation
(both detail)

(d) Right view (detail) and cost function
(adaptive window)

Fig. 7. This figure compares correlation based stereo with fixed windows and with windows
adapted to object boundaries computed from segmenting the color image into depth continuous
regions. The whole scene is shown (a), while we focus on the group of balls and the webcam in
front of the box (b-d). The eroded operation map is used to initialize the watershed segmentation
(c) leading to a mask adapting the stereo correlation windows. The red circle shows the initial
disparity guess and the green circle the disparity corresponding to minimum cost (b+d).

for our application scenario. The idea is that valid and invalid regions serve as mark-
ers for the binary segmentation. Because of errors in the projections for vertices with
incorrect depth (i.e. especially invalid vertices), color pixels are not necessarily labeled
correctly. Consequently, the sets of valid and invalid pixels are eroded independently,
leaving a set of unlabeled pixels in the proximity of object boundaries (see Figure 7(c)).
These sets of valid and invalid pixels serve as the markers that initialize the segmenta-
tion as starting points. If objects have boundaries in the color images, the segmentation
will accurately label pixels as being connected to the valid or invalid pixels. The result-
ing binary map restricts the correlation window.

Figure 7 shows the influence of this border correction filter: an object is too dark
for the PMD camera, yielding wrong depth values and marked as invalid. A correlation
based stereo algorithm with fixed window finds the wrong corresponding point (7(b)).



After eroding the sets of invalid and valid pixels, the watershed algorithm segments the
object along its boundary (7(c)). Restricting the window to the segmented object yields
the correct correspondence (7(d)).

4.3 Final 3D mesh

Finally, we replace the PMD depth of each invalid pixel with the computed stereo depth
value. The resulting mesh is rendered into the z-buffer of one of the camera views using
the color values from the camera. This allows using the depth values in interactive
applications.

5 Results

As occlusion is one of the most fundamental factors in monoscopic depth perception,
AR applications become much more immersive if occlusion handling is embedded. This
is demonstrated in Fig. 8 and the accompanying video [htt09]. Our approach makes it
possible to handle dynamic occlusions like a hand in front of the virtual objects, unlike
model based techniques [BWRT96]. This is very practicable as most AR application
focus on manual interaction of virtual and real objects.

(a) no occlusion (b) occlusion

Fig. 8. The occlusion strongly enhances the depth impression of the scene.

Other approaches to occlusion handling in AR have used stereo vision [KOTY00]
or PMD depth sensing [FHS07]. We have compared the raw output of the PMD camera
projected into the view of the color image and the raw stereo data with the results of
our approach (see Fig. 9). A dark object in this scene is assigned incorrect depth values
delivered by the PMD camera and, consequently, is mapped to the background through
the interpolation process (Fig. 9(c)). Fig. 9(d) shows the depth map obtained using
correlation based stereo with a fixed window as used in other stereo algorithms aiming
at interactive frame rates. The images in 9(e) and 9(f) show the improved results using



our algorithm. Notice the appearance of dark objects while they are not captured at all
by the PMD camera.

(a) Left view (b) Right view

(c) Only PMD (bad pixels interpolated) (d) Only Stereo

(e) Stereo and PMD data (f) plus adaptive windows

Fig. 9. In this example we compare the depth map acquired with the PMD camera (c) and using
correlation based stereo (d) with our results, i.e. correcting low confidence areas of the PMD range
image using stereo on-demand with a fixed window approach (e) and using adaptive correlation
windows based on segmentation (f).

Several parameters influence the performance of our system: the frame rates we
obtain are limited by the cameras and the transmission to roughly 11fps on our test
system, an AMD Athlon 2GHz Dual Core Processor with 1GB RAM. The additional
cost of our algorithm depends on the size of the correlation window and the number
of depth values that have to be corrected using stereo on-demand. Table 1 compares
several situations, where we have chosen the thresholds so that approximately 250 resp.
500 depth values were considered invalid. The computation times clearly show that



there is a linearity between time and correlation window size for stereo computation on
the one hand and on the other hand, the ratio between the amount of corrected pixels
and computational timings is linear as well.

Acquisition 91 ms
Preprocessing 23 ms
Stereo+PMD Window ≈ 250 px ≈ 500 px

5×5 9.5 ms 20.5 ms
7×7 16 ms 33.3 ms
9×9 25 ms 55 ms
11×11 42 ms 88 ms

Table 1. Performance on an AMD Athlon 2.00 GHz Dual Core Processor with 1GB RAM. Win-
dow is the size of the correlation window used for stereo. The computation times are compared
for each step while capturing a scene with approx. 250 and 500 corrected pixels.

6 Discussion

Our system provides a framework for interactive AR applications, where the depth map
is necessary for visual or physical interaction between synthetic and real objects. Our
approach is using low cost, light weight components and exploits the properties of both
sensor types. In particular, we use range data for narrowing the disparity search and
adapting the correlation windows to potential depth discontinuities.

We demonstrate how the resulting system can be used for handling occlusions. The
depth data can also be used for collision detection and other interactive solutions. Some
of the possible interactions are demonstrated in the accompanying video [htt09]. The
dynamic and global depth map of the scene would also allow computing shadows for
virtual objects, or using higher quality rendering techniques for further improving the
realism of virtual objects [BR05].

Our system can be improved in several aspects. The synchronization of the PMD
camera as part of the software system results in a maximum of 11fps – using a hardware
solution would allow exploiting the maximum frame rate of the cameras. The computa-
tions necessary for fusing the data and improving the depth images are easy to distribute
to several cores so that exploiting a higher input frame rate would be easy if the system
were coupled with a modern CPU. As mentioned in section 2.2, the accuracy is depend-
ing on the PMD range data, and we think that future developments in camera hardware
and calibration would lead to an increased working range.

It would be interesting to apply different segmentation algorithms for adapting the
stereo windows. Feris et al. [FRC+05] use region growing in a similar situation. Find-
ing the best balance between performance and accuracy in this step is important future
work. In addition, it might be possible to make use of other information than confidence
and color, such as range data or predictions from preceding frames. Another step in en-
hancing the algorithm would be to define a confidence measure for the stereo data and



use it for further controlling the depth reconstruction. This could reduce the error in
regions where both systems fail, for example large dark and homogeneous objects.
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