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Abstract

This work deals with the problem of automatically choosing the correct exposure (or integration) time for time-
of-flight depth image capturing. We apply methods known from high dynamic range imaging to combine depth
images taken with differing integration times in order to produce high quality depth maps. We evaluate the quality
of these depth maps by comparing the performance in reconstruction of planar textured patches and in the 3D
reconstruction of an indoor scene. Our solution is fast enough to capture the images at interactive frame rates and

also flexible to deal with any amount of exposures.

Categories and Subject Descriptors (according to ACM CCS): IMAGE PROCESSING AND COMPUTER VISION
[L.4.8]: Scene Analysis—Range data COMPUTER GRAPHICS [1.3.3]: Picture/Image Generation—Bitmap and

framebuffer operations

1. Introduction

Time-of-flight depth sensing is utilized in more and more
fields of application, among others simultaneous localiza-
tion and mapping (SLAM), motion capturing in gaming
and pedestrian detection in automobiles [MWSP06, YIMO07,
OBL*05, KBKLO09]. All of these applications need the sen-
sor to capture reliable depth data within a range of several
meters.

Many time-of-flight cameras work after the following
principle: a light source emits an amplitude modulated si-
nusoidal signal. This signal is reflected by the target and
captured by a CMOS based chip. The chip is synchronized
with the light source and takes several exposures per cycle
of the emitted signal. From these samples the phase shift can
be calculated. This phase shift is directly proportional to the
distance between sensor and target.

The integration time indicates how long the chip is ex-
posed before the samples are integrated in order to calculate
the desired phase shift. A deficiency in numbers of samples
leads to uncertain results dominated by noise. On the other
hand, too many samples potentially lead to saturation and
photons are no longer counted, which also results in errors.
Hence setting the correct integration time is crucial for cor-
rectly measuring the distance. Usually, the operator of the
device has to define the integration time for the sensor man-
ually. May et al. [MWSPO06] have proposed a control mecha-
nism that adjusts the integration time during operation. Here,
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the integration time is set by means of a feedback controller
that assumes that the integration time is optimal when the
mean intensity of the captured image is at a pre-defined ideal
value.

Nevertheless, such an auto-exposure mode is only able to
find one globally optimal exposure time for one scene. And
just as in regular photography, the resulting image might still
have under- and over-exposed regions. As the depth mea-
surement relies on the reflection of an emitted light signal,
under- and over-exposed regions lead to errors in depth esti-
mation, as explained above. In fact, each pixel has its own
optimal integration or exposure time, which unlike tradi-
tional photography depends on the distance and reflectivity
of the captured object itself.

In this paper, we adapt recent solutions from computa-
tional photography to this problem. Instead of optimizing
for a global integration time, we capture several images and
search locally in each exposure for regions which provide
most accurate distance data. This poses two challenges: first,
the sources of error in the sensor are different from tradi-
tional over- and under-exposure in imaging. Second, time-
of-flight depth sensing is useful mostly in real time applica-
tions meaning the solution has to be computed in fractions
of a second.

We implemented a method for capturing time-of-flight
range maps in order to provide high quality depth data
for the full theoretic range of the camera. Our work is in-
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spired by high dynamic range (HDR) imaging, but faces
the challenge of dealing with depth instead of color infor-
mation. Therefore, we propose new measures for the qual-
ity of the depth data locally in the original images that
lead an image fusion process. These measures are both in-
spired by a similar approach for color images by Mertens
et al. [MKVO07] and founded on research in image quality
measures [MB09, Gos05]. The time-of-flight camera we use
returns amplitude images that refer to the amount of light
that has been captured by the sensor. We use only these
images and the distance data to compute our quality mea-
sures. Hence, our solution does not need any calibration
process in order to enhance the depth images. We imple-
mented a real time solution that exploits the capability of the
PMD[vision]@CamCube 3.0 camera to capture four images
with varying integration times almost at once.

In order to demonstrate the superior quality of the fused
depth maps, we captured known planar objects at varying
depths and measured the error from the residuals of a least-
square plane fitting in the planar regions of the image. Our
results show that the fused data is more accurate than data
from the ideal exposure time even for a single planar depth
region and gives much lower errors if several planar regions
at varying depths are taken into account.

We further apply our fused range maps for point cloud
alignment and compare the results of the 3D reconstruction
of indoor environments with them produced by single expo-
sure depth images.

To our knowledge, we present in this paper the first ap-
proach to combine several exposures with varying integra-
tion times of a time-of-flight camera in order to enhance the
quality of the depth maps. In the following section we relate
our work to approaches concerning the integration time in
time-of-flight imaging as well as alternative approaches to
enhance the dynamic range of the depth sensing.

2. Related Work

First, the camera manufacturers try to enhance the dynamic
range as much as possible. MESA Imaging, producer of
the SwissrangerTMcameras has developed a solution that al-
lows to control the integration time per pixel individually
[BOL*05]. Such an enhanced pixel stops the integration as
soon as the capacitance exceeds a pre-defined threshold. Un-
fortunately, the power consumption of such a pixel enhance-
ment is too high in practice and additionally, the used inte-
gration time for each pixel has to be stored and transfered
in order to reconstruct a homogeneous intensity image. This
lead MESA Imaging to not implement such a feature in their
products.

There are ambitions to extend the range for time-of-flight
imaging by PMDTec as they are offering a plugin to en-
able modulation frequencies down to 1 MHz. This enhances
the working range theoretically up to 150 meter. However

in practice, the accuracy would be strongly reduced and the
illumination unit has to be amplified as well. Nevertheless
PMDTec promises an extended range of 30 meter.

There are numerous approaches that deal with denois-
ing the distance data captured by time-of-flight sensors.
While most of these approaches either use additional sen-
sors [HA09, HSJS10, LLKOS, ZWYDO08] or rely on elabo-
rately generated calibration data [KRI06, LKO7, LSKK10],
our approach can be applied to all time-of-flight cameras that
deliver amplitude and distance data without any preparation
of the sensor. While receiving very good results, Lindner and
Kolb [LKO7] use an additional camera and pre-captured cal-
ibration data in order to correct the error resulting from dif-
ferently reflecting objects.

Similar to our approach, Schuon et al. [STDTO08] pre-
sented a method based on super resolution. Here, several
noisy depth maps captured from slightly different positions
are combined to one high resolution, high quality depth map.
While this approach has been successfully extended and ap-
plied to 3D shape scanning [STDT09, CSC*10], it does not
provide - in contrast to our approach - the enhanced depth
imaging in real-time.

As already mentioned, our approach is inspired by HDR
imaging. Here, several exposures of the same scene are cap-
tured with varying exposure times. This leads to images with
a varying amount of details in different regions of the image.
These images are fused together in order to keep the details
visible in all image regions. We refer to the book of Reinhard
et al. [RWPDOS5] for a complete overview in HDR imaging.

Usually, the different images are aligned to one HDR ra-
diance map which can not be displayed without specialized
devices [DMOS]. It has to be transformed back to low dy-
namic range by tone mapping to enable the visualization on a
regular display. This process has been shortened by Mertens
et al. [MKVO07]. Thereby, the images are fused directly into a
single low dynamic range image that contains all the details
from a collection of differently exposed images. For each
image pixel a weight is calculated and the final result is an
affine combination of the images.

The fusion of color images has already been realized by
Goshtasby [Gos05]. He proposes a measure for the entropy
of each image pixel and fuses the images based on this
measure in a gradient-ascent approach which is not capa-
ble for real-time applications. In contrast to this, Mertens
et al. [MKVO07] aim on the same outcome of fusing im-
ages with varying exposure times. They propose three qual-
ity measures and merge the images in a fast pyramid based
algorithm.

These quality measures are not suitable for range maps
in general. We therefore adapt the quality measures to the
characteristics of time-of-flight range images. The measure
should define a confidence value of the depth data as ap-
plied in many other approaches [MDH*08,HA09,KBKL09].
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While Frank et al. [FPH09] show that the amplitude value is
an optimal indicator for the confidence of the range data,
Reynolds et al. [RDP*11] demonstrate that a trained ran-
dom forest outperforms simple amplitude based threshold-
ing mechanisms. Apart from that Foix et al. [FAACT10]
recently presented an approach that models the uncertainty
only from the depth data. Based on these inconsistencies in
the literature we develop and evaluate new measures. We ex-
plain our choices in the next section.

3. Algorithm

Our fusion algorithm is similar to the one described by
Mertens et al. [MKV07]. We take several exposures of a
scene and fuse the depth images together. Each exposure is
multiplied per pixel with a weight map W, where k = 1...N
indicates the number of exposures. This weight map is con-
structed as an affine combination of several individual qual-
ity measures. We define

— pmWc ww Ws WE
Wi =M X My" X Mg X Mg,

with the quality measures M (resp. Contrast, Well-
exposedness, Surface and Entropy) and X denotes an per
pixel multiplication. Each quality measure M is weighted
with an corresponding exponent w € {0, 1}. The weight map
is normalized so that the weight of all exposures k£ sums up
to one for each pixel.

The fusion is realized as a multiresolution blending. In-
stead of fusing directly the full resolution depth maps, image
pyramids are computed and fused as proposed by Burt and
Adelson [BAS83]. The resulting fused depth map R can be
reconstructed from the Laplacian pyramid L{R}. The /-th
level is defined by

L{RY = ¥ G (W) x L{De},
=0

where D, denotes the depth map from the k-th exposure.
Each level / of the pyramid is constructed by a weighted sum
of the corresponding levels of a Laplacian pyramid over all
exposures. The weights are obtained from the 1-th level of
the Gaussian pyramid of the weight maps. See Figure 1 for a
schematic overview about the process. Note that this fusion
scheme slightly enhances the quality, however it can also be
replaced by a simpler full resolution blending.

3.1. Quality measures

In this section, we describe the definition of new quality
measures for the depth map fusion in detail. Note that these
measures are not entirely calculated from the depth images,
but also based on the amplitude images. We enumerate the
image pixel indices as i and j. The distance image D with
distance values D;; is normalized to [0, 1] by setting a linear
mapping. Distances with the theoretical maximal distance of
7.5m are mapped to 1, while a distance of Om is mapped to
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zero. The amplitude image A with amplitudes A;; is also nor-
malized. Note that the amplitude does not have a theoretical
maximum. It is bounded by the technical properties of the
chip, hence we bound the maximum at a value where the
sensor is not yet saturated.

a) b)

N

Figure 1: Exposure fusion principle: a) Captured depth
maps, b) Depth map — Laplacian pyramids, c) Weight map

— Gaussian pyramid, d) Fused pyramid, e) Final depth map
(after [MKVO07])

3.1.1. Contrast Mo

One big issue with time-of-flight depth images are so called
flying pixels. Due to aliasing effects, the distance along
depth discontinuities is computed from photons collected
by the sensor from foreground and background. This leads
to wrong distances that lie between the values of fore- and
background. As the amplitudes along the depth discontinu-
ities are also measured per pixel and hence between the fore-
and background values, we can define a quality measure that
fosters image regions where the depth discontinuities do not
lead to flying pixels. These regions are identified by the con-
trast in the amplitude image which leads us to define

Mc = ||AA]l.

‘We apply a 3x3 Laplacian filter to the amplitudes images and
use the absolute values of the filter response which yields
an indicator for contrast. In the amplitude images a strong
contrast occurs usually along depth discontinuities as the re-
flectance of the foreground object differs from the object be-
hind. Note that this measure has also been used by Mertens
et al. [MKVO07] in order to enhance the contrast in the result-
ing image.

3.1.2. Well-exposedness My

For time-of-flight cameras the amplitude image indicates
under- or overexposure, hence the amplitude can be used as
a confidence measure. As already mentioned, we normalize
the amplitude images. We determine amplitude values Ay,
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and Ay for under- and overexposure and map all the values
in between linearly to the interval [0,1]. All values outside
this range are mapped to zero or one respectively. We calcu-
late each pixel W;; of this quality measure My as

*(Aij*a)z
VVU —=¢ 22

with oo = 0.5 and 6 = 0.2. We adapt this quality measure
from the so-called well-exposedness measure from Mertens
et al. [MKVO07]. They argue that intensities close to zero in-
dicate underexposure and close to one overexposure respec-
tively. In our adaption the pixels with an optimal normalized
amplitude value of 0.5 get the highest weighting. Note that
the critical part is the determination of A,,;;, and Auax. They
can either be obtained from the camera manufacturer or by
capturing a wall from a fixed distance. Then plot the mean
distance and amplitude values while varying integration time
from low to high. The mean distance will change drastically
as soon as the sensor is under- or overexposed. From this
boundaries A,;;;, and A.x can be determined.

3.1.3. Surface My

Beside these two quality measures that already lead to
promising results, we defined a further one based on the
measure of the structural similarity [WBSS04] and its adap-
tion to range maps [MB09]. A measure for the surface
roughness can be defined as

2
Mg—1— (O=#)
max(c — u?)

where G is the Gaussian filtered version of D?, while uis
a Gaussian filtered version of D. The difference ¢ — ,u2 cor-
relates with the frequencies in the images. This difference is
divided by its maximal value and subtracted from one so that
the measure My is high in smooth regions. The smoothness
indicates the absence of noise and leads to the assumption
that the depth values are correct.

3.1.4. Entropy Mg

Similar to the approach from the well-exposedness measure
My, Goshtasby [Gos05] describes the idea for image fusion
to strengthen image regions that contain the most informa-
tion. A measure for the amount of information is entropy.
The entropy measure Mg contains an entropy value E;; for
each pixel. It is calculated for a local histogram around each
pixel of the image as

Ejj=—Y p(Aij)log,(p(A;j)

where p contains the histogram counts from an 9x9 neigh-
borhood of each pixel and each histogram contains 256 bins.
The entropy of an image has the property that it only de-
pends on the image histogram. This leads to a disadvantage
of the entropy. The image information is defined as uncer-
tainty which is maximal for noisy images.

Figure 2: Comparison of all weights side by side. Each col-
umn is one integration time. Rows are sorted from top to
bottom showing Mc,Mw ,Ms and M.

See Figure 2 for a side by side comparison of all quality
measures for an example scene.

3.2. Discussion

We further have to define the number of exposures k that we
will use for image fusion. Our algorithm works with an inde-
pendent number of exposures. In our real-time implementa-
tion, we fuse four images because the PMD|vision]® Cam-
Cube 3.0 provides a capture mode that allows to take four
successive frames without transferring data in between. Due
to the short integration times about max. 5 - 10 ms, these four
exposures do not differ significantly even for scenes contain-
ing motion. Furthermore, the computation costs fusing four
images still allow interactive frame rates.

In order to correct the distance values in real-time, the
quality measures have to be computed efficiently. We use
a profiler for determining the attended computation time of
each measure. See Figure 3 for an illustration of the pro-
filing data measured during live capture and display of the
fused depth images. The blue bars in the front row display
the computation time contribution during the capture, fu-
sion and anything else (e.g. rendering). The red bars are the
weighting functions inside the fusion algorithm. This figure
clearly shows that the entropy calculation is the bottle neck
in our implementation. It leads to a decrease in frame rate
in the real-time implementation down to 2-4 fps even if op-
timized algorithms are used for the calculation of the log-
arithm [VFMO7] and the number of unnecessary additions
in the summation is minimized. Without calculating the en-
tropy the whole fusion process is computed in 0.0461 sec-
onds on standard laptop computer with a dual core processor
running at 2.16 GHz and equipped with 2 GB of RAM.

(© 2011 The Author(s)
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Figure 3: Results from profiling: blue bars show the distri-
bution for the complete program, red bars the distribution
inside teh fusion algorithm.

Figure 4: The static test scene (left: PMD CamCube inten-
sity image, right:comparison of standard deviations single
exposure and fused solution)

We therefore further evaluate our algorithm to identify the
impact of each quality measure on the accuracy of the depth
maps.

4. Evaluation

We implement several test environments in order to demon-
strate the superior quality of the fused depth maps over depth
maps acquired with a single integration time.

4.1. Stability over time test

First, we need to define the integration times for our test.
Therefore, we implemented a PID controller approach fol-
lowing the ideas of May et al. [MWSPO06]. The integration
time is set so that the mean intensity of the captured image
is optimal. In the following, we refer to this integration time
as the ideal integration time #’. In addition, the number of
exposures and the integration times for each exposure have
to be defined for our test cases. We decided to use following
scheme for the first test:

N
5 /

f;=2"72¢

where N is the number of exposures and i = 0..N indicates
the exposures.

As a first comparison between the fused images and im-
ages captured with the ideal integration time, we analyzed
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Figure 5: Plane fitting test scene (left: PMD CamCube in-
tensity image, right: fused depth map with two ROI (white:
near, black: far)

the standard deviation of the distance values of a static scene
over a time period of 50 frames. See Figure 4 for an in-
tensity image of the scene (left). We further compare the
standard deviations per pixel (right) - we colorize the pix-
els depending whether the standard deviation is smaller for
the single integration time exposures (red) or for the fused
solution (blue). All pixels where the standard deviation does
not differ more than 5 mm are marked green. This illustrates
that the fused values are more stable especially around depth
discontinuities and in textured regions. The mean standard
deviation over all pixels in the fused images over time is re-
duced significantly from 2.94 cm to 2.17 cm.

4.2. Plane fitting error

In a second test, we place two planar objects (see the
checkerboards in Figure 5) at different depths in the scene.
We select these two regions of interest (ROI) manually. Note
that the far checkerboard is mounted on the wall. We cap-
tured a series of four exposure with the same scheme as in
the stability test case.

As our algorithm enhances directly the depth maps, we
have to transform the distance values of each pixel in both
ROI (near and far) into 3D coordinates. We use the fixed
intrinsic parameters of the PMD CamCube to calculate the
3D points for each pixel of our fused depth maps as well as
to compute a point cloud from the depth map obtained with
by a single exposure.

We then fit a plane into each ROI in 3D coordinates using
a principal component analysis. The perpendicular distance
from each point to the plane is minimized. The error is de-
fined as this distance. We then compare the mean squared
error (MSE) for this plane fit and the computation time over
various weighting combinations. For each ROI we compute
the MSE for the data captured with the optimal global in-
tegration time and for the fusion results using all possible
combinations for the weighting exponents. In addition, we
measure the computation time for the fusion process (see
Table 2). The second rightmost column contains a weighted
sum of both MSE. We use the ratio between the MSE from
the single exposure as weight for the sum, so that both MSE



U. Hahne & M. Alexa / Exposure Fusion for Time-Of-Flight Imaging

Figure 6: Close up on the far plane: green dots indicate
measures from our fused results, red the single exposure and
blue the simple amplitude weighting.

are equal. The rightmost column shows the error in relation
to the weighted sum MSE from the single exposure — values
below one indicate an enhancement.

The primary outcome is that the best weighting combina-
tion in this setup is a combination of all presented quality
measures (see the last row). Our results show that the error
is reduced by about nearly 38%.

In order to stress the positive effect of our weights we
further compare our solution with a simple approach. We
use the normalized amplitude image directly as weight. This
results in a small error for the near plane, however the far
plane fitting leads to an MSE of 0.02346 what is even larger
than in the single exposure. We show the (far) plane fitting
results in Figure 6.

We illustrate the correlation of error and computation time
in Figure 7. The plot displays the time and error for the com-
binations of the three most important quality measures - we
left out the surface measure My for clarity. The contrast mea-
sure M¢ can clearly be identified as the most effective mea-
sure. Adding the well exposedness measure My slightly re-
duces the error. The entropy measure Mg further reduces the
error, however at the expense of the computation time. Note
that these timings are from the MATLAB implementation,
however they confirm the trend from the profiling results of
the real-time C++ implementation from Figure 3. Neverthe-
less the entropy is a suitable quality measure if the computa-
tion time is irrelevant.

We did the plane fitting test on further example scenes.
Figure 8 shows two walls in an indoor environment. The
wall on the right is close to the camera and untextured while
the facing wall is textured. Note that the depth variance of
the walls is far below the precision of the camera and we
can hence assume planarity. We again fit a plane as in the
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18 OWell exposedness
X Entro
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=
o 12r X 1
2
2
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Figure 7: Plot of error versus timing for various weighting
combinations.

%

Figure 8: Second plane fitting test scene (left: PMD Cam-
Cube intensity image, right: fused depth map with two ROI
(face and right)

previous example. We compare our fusion result with two
simpler approaches. First, we did not apply the multiresolu-
tion fusion scheme, but simply computed the weighted sum
for each pixel. Second, instead of using our derived quality
measures, we again use the normalized amplitude directly as
weight. Beside calculating the MSE, we further compare the
estimated angle between the two walls which should be 90°
(see Table 1). We included the results from the best single
exposure of the sequence.

4.3. 3D reconstruction

An important area for the usage of time-of-flight data are
autonomous robots and the SLAM algorithm. In order to de-
termine the position of the robot (and hence the camera) the
captured depth maps have to be registered. One way of reg-
istering is the alignment of point clouds. We therefore eval-
uate our method by performing a point cloud alignment by

Method MSE (face) | MSE (right) | Angle
Multiresolution 0.07888 0.067636 91.57
Weighted sum 0.07912 0.067819 91.61
Amplitude 0.07895 0.067769 91.60
Single exposure 0.07893 0.067643 91.48

Table 1: Error values from second plane fitting test scene for
comparison with simpler weighting and fusion schemes.

(© 2011 The Author(s)
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Table 2: Overview about the effect of each weight on accuracy and computation costs.

Mc | My | Mg | Mg Timing | MSE (near) | MSE (far) | Weighted sum | Rel. error
0 0 0 0 0.000 0.000761 0.0223 0.0446 1.000
0 0 0 1 1.248 0.001033 0.0215 0.0518 1.160
0 0 1 0 0.478 0.001689 0.0199 0.0695 1.557
0 0 1 1 1.304 0.001010 0.0168 0.0465 1.041
0 1 0 0 0.452 0.001287 0.0256 0.0634 1.421
0 1 0 1 1.263 0.000786 0.0206 0.0436 0.977
0 1 1 0 0.507 0.001254 0.0190 0.0558 1.251
0 1 1 1 1.317 0.000769 0.0161 0.0386 0.866
1 0 0 0 0.466 0.000414 0.0178 0.0299 0.671
1 0 0 1 1.275 0.000401 0.0175 0.0293 0.657
1 0 1 0 0.504 0.000413 0.0176 0.0297 0.666
1 0 1 1 1.324 0.000400 0.0174 0.0292 0.653
1 1 0 0 0.476 0.000383 0.0171 0.0283 0.634
1 1 0 1 1.296 0.000375 0.0169 0.0279 0.625
1 1 1 0 0.537 0.000383 0.0169 0.0282 0.631
1 1 1 1 1.358 0.000375 0.0168 0.0278 0.623

ICP convergence

—Single exposure 1
—Fusion

L L s L n
0 1 2 3 4 6 7 8 9 10

5
Iteration
Figure 9: Convergence of the iterative closest points (ICP)

algorithm for single exposure depth maps and our fused
depth maps

means of the well-known iterative closest point (ICP) algo-
rithm [BM92,CMO1]. We then compare the alignment error
and the convergence.

In our experiment, we mount the camera on a professional
tripod and capture a static indoor scene by rotating the tri-
pod stepwise. We use six exposures for fusion, then rotate
the tripod by 10 degrees and capture another series of expo-
sures. For each position, we compute two point clouds. One
directly from a single exposure with an optimal integration
time, the second from the fused depth map. This results in
two pairs of point clouds that have to be aligned. We use the
ICP implementation from Kjer and Wilm [KW10] to deter-
mine a rigid transformation. For our fused solution the al-
gorithm converges equally fast but the final error is smaller
(see Figure 9).

Further we compared the resulting transformation with
our manually defined ground truth - a rotation by 10 degrees
around the y-axis. Here, the rotation error is defined as the

(© 2011 The Author(s)
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deviation from the identity
e(R,R1) = ||I - RR{ ||,

where R is the assumed correct rotation and R; the one we
test, while || e ||z denotes the Frobenius norm. Our fused so-
lution results in an error of 0.0956 while the single exposure
solution produces an error of 0.1598. This is an reduction of
about 40%.

4.4. Limitations

Beside the shown positive examples our method is also lim-
ited. In some scenarios the fused depth maps are of equal
quality as a single exposure. Table 1 shows that our method
is not always far better than simpler approaches. This is the
case if all objects have good (Lambertian) reflection prop-
erties and their distance is in a limited range. Our method
works best if the distances and reflection properties are
highly varying. However, neither strong noise in certain ar-
eas that are farer than the theoretic limit of 7.5 meters, nor
severe over-saturation can be resolved properly. In addition,
it is necessary that none of the input images is completely
noisy.

5. Conclusion

We have presented and evaluated a new method to enhance
the performance of time-of-flight imaging devices. We de-
veloped test methods that do not need any extra hardware
like a laser scanner in order to estimate the quality of our
method. Our method successfully fuses several exposures
into a single depth map and is on one hand not limited in
the number of exposures and on the other hand fast enough
to perform in real-time.
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Our method not only works for fusing depth maps cap-
tured with different integration times, it also allows the com-
bination of images with other varying parameters like the
modulation frequency. We expect our method to achieve
even better results for future time-of-flight cameras with an
extended theoretic range.
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